/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "axutil_hash.h" #include #include /* * The internal form of a hash table. * * The table is an array indexed by the hash of the key; collisions * are resolved by hanging a linked list of hash entries off each * element of the array. Although this is a really simple design it * isn't too bad given that environments have a low allocation overhead. */ typedef struct axutil_hash_entry_t axutil_hash_entry_t; struct axutil_hash_entry_t { axutil_hash_entry_t *next; unsigned int hash; const void *key; axis2_ssize_t klen; const void *val; }; /* * Data structure for iterating through a hash table. * We keep a pointer to the next hash entry here to allow the current * hash entry to be freed or otherwise mangled between calls to * axutil_hash_next(). */ struct axutil_hash_index_t { axutil_hash_t *ht; axutil_hash_entry_t *this, *next; unsigned int index; }; /* * The size of the array is always a power of two. We use the maximum * index rather than the size so that we can use bitwise-AND for * modular arithmetic. * The count of hash entries may be greater depending on the chosen * collision rate. */ struct axutil_hash_t { const axutil_env_t *env; axutil_hash_entry_t **array; axutil_hash_index_t iterator; /* For axutil_hash_first(NULL, ...) */ unsigned int count; unsigned int max; axutil_hashfunc_t hash_func; axutil_hash_entry_t *free; /* List of recycled entries */ }; #define INITIAL_MAX 15 /* tunable == 2^n - 1 */ /* * Hash creation functions. */ static axutil_hash_entry_t ** axutil_hash_alloc_array( axutil_hash_t *ht, unsigned int max) { return memset(AXIS2_MALLOC(ht->env->allocator, sizeof(*ht->array) * (max + 1)), 0, sizeof(*ht->array) * (max + 1)); } AXIS2_EXTERN axutil_hash_t *AXIS2_CALL axutil_hash_make( const axutil_env_t *env) { axutil_hash_t *ht; AXIS2_ENV_CHECK(env, NULL); ht = AXIS2_MALLOC(env->allocator, sizeof(axutil_hash_t)); if(!ht) { AXIS2_ERROR_SET(env->error, AXIS2_ERROR_NO_MEMORY, AXIS2_FAILURE); return NULL; } axutil_env_increment_ref((axutil_env_t*)env); ht->env = env; ht->free = NULL; ht->count = 0; ht->max = INITIAL_MAX; ht->array = axutil_hash_alloc_array(ht, ht->max); ht->hash_func = axutil_hashfunc_default; return ht; } AXIS2_EXTERN axutil_hash_t *AXIS2_CALL axutil_hash_make_custom( const axutil_env_t *env, axutil_hashfunc_t hash_func) { axutil_hash_t *ht; AXIS2_ENV_CHECK(env, NULL); ht = axutil_hash_make(env); if(ht) { ht->hash_func = hash_func; } return ht; } /* * Hash iteration functions. */ AXIS2_EXTERN axutil_hash_index_t *AXIS2_CALL axutil_hash_next( const axutil_env_t *env, axutil_hash_index_t *hi) { hi->this = hi->next; while(!hi->this) { if(hi->index > hi->ht->max) { if(env) AXIS2_FREE(env->allocator, hi); return NULL; } hi->this = hi->ht->array[hi->index++]; } hi->next = hi->this->next; return hi; } AXIS2_EXTERN axutil_hash_index_t *AXIS2_CALL axutil_hash_first( axutil_hash_t *ht, const axutil_env_t *env) { axutil_hash_index_t *hi; if(env) hi = AXIS2_MALLOC(env->allocator, sizeof(*hi)); else hi = &ht->iterator; hi->ht = ht; hi->index = 0; hi->this = NULL; hi->next = NULL; return axutil_hash_next(env, hi); } AXIS2_EXTERN void AXIS2_CALL axutil_hash_this( axutil_hash_index_t *hi, const void **key, axis2_ssize_t *klen, void **val) { if(key) *key = hi->this->key; if(klen) *klen = hi->this->klen; if(val) *val = (void *)hi->this->val; } /* * Expanding a hash table */ static void axutil_hash_expand_array( axutil_hash_t *ht) { axutil_hash_index_t *hi; axutil_hash_entry_t **new_array; unsigned int new_max; new_max = ht->max * 2 + 1; new_array = axutil_hash_alloc_array(ht, new_max); for(hi = axutil_hash_first(ht, NULL); hi; hi = axutil_hash_next(NULL, hi)) { unsigned int i = hi->this->hash & new_max; hi->this->next = new_array[i]; new_array[i] = hi->this; } AXIS2_FREE(ht->env->allocator, ht->array); ht->array = new_array; ht->max = new_max; } unsigned int axutil_hashfunc_default( const char *char_key, axis2_ssize_t *klen) { unsigned int hash = 0; const unsigned char *key = (const unsigned char *)char_key; const unsigned char *p; axis2_ssize_t i; /* * This is the popular `times 33' hash algorithm which is used by * perl and also appears in Berkeley DB. This is one of the best * known hash functions for strings because it is both computed * very fast and distributes very well. * * The originator may be Dan Bernstein but the code in Berkeley DB * cites Chris Torek as the source. The best citation I have found * is "Chris Torek, Hash function for text in C, Usenet message * <27038@mimsy.umd.edu> in comp.lang.c , October, 1990." in Rich * Salz's USENIX 1992 paper about INN which can be found at * . * * The magic of number 33, i.e. why it works better than many other * constants, prime or not, has never been adequately explained by * anyone. So I try an explanation: if one experimentally tests all * multipliers between 1 and 256 (as I did while writing a low-level * data structure library some time ago) one detects that even * numbers are not useable at all. The remaining 128 odd numbers * (except for the number 1) work more or less all equally well. * They all distribute in an acceptable way and this way fill a hash * table with an average percent of approx. 86%. * * If one compares the chi^2 values of the variants (see * Bob Jenkins ``Hashing Frequently Asked Questions'' at * http://burtleburtle.net/bob/hash/hashfaq.html for a description * of chi^2), the number 33 not even has the best value. But the * number 33 and a few other equally good numbers like 17, 31, 63, * 127 and 129 have nevertheless a great advantage to the remaining * numbers in the large set of possible multipliers: their multiply * op can be replaced by a faster op based on just one * shift plus either a single addition or subtraction op. And * because a hash function has to both distribute good _and_ has to * be very fast to compute, those few numbers should be preferred. * * -- Ralf S. Engelschall */ if(*klen == AXIS2_HASH_KEY_STRING) { for(p = key; *p; p++) { hash = hash * 33 + *p; } *klen = (axis2_ssize_t)(p - key); /* We are sure that the difference lies within the axis2_ssize_t range */ } else { for(p = key, i = *klen; i; i--, p++) { hash = hash * 33 + *p; } } return hash; } /* * This is where we keep the details of the hash function and control * the maximum collision rate. * * If val is non-NULL it creates and initializes a new hash entry if * there isn't already one there; it returns an updatable pointer so * that hash entries can be removed. */ static axutil_hash_entry_t ** axutil_hash_find_entry( axutil_hash_t *ht, const void *key, axis2_ssize_t klen, const void *val) { axutil_hash_entry_t **hep, *he; unsigned int hash; hash = ht->hash_func(key, &klen); /* scan linked list */ for(hep = &ht->array[hash & ht->max], he = *hep; he; hep = &he->next, he = *hep) { if(he->hash == hash && he->klen == klen && memcmp(he->key, key, klen) == 0) break; } if(he || !val) return hep; /* add a new entry for non-NULL values */ he = ht->free; if(he) ht->free = he->next; else he = AXIS2_MALLOC(ht->env->allocator, sizeof(*he)); he->next = NULL; he->hash = hash; he->key = key; he->klen = klen; he->val = val; *hep = he; ht->count++; return hep; } AXIS2_EXTERN axutil_hash_t *AXIS2_CALL axutil_hash_copy( const axutil_hash_t *orig, const axutil_env_t *env) { axutil_hash_t *ht; axutil_hash_entry_t *new_vals; unsigned int i, j; ht = AXIS2_MALLOC(env->allocator, sizeof(axutil_hash_t) + sizeof(*ht->array) * (orig->max + 1) + sizeof(axutil_hash_entry_t) * orig->count); ht->env = env; axutil_env_increment_ref((axutil_env_t*)env); ht->free = NULL; ht->count = orig->count; ht->max = orig->max; ht->hash_func = orig->hash_func; ht->array = (axutil_hash_entry_t **)((char *)ht + sizeof(axutil_hash_t)); new_vals = (axutil_hash_entry_t *)((char *)(ht) + sizeof(axutil_hash_t) + sizeof(*ht->array) * (orig->max + 1)); j = 0; for(i = 0; i <= ht->max; i++) { axutil_hash_entry_t **new_entry = &(ht->array[i]); axutil_hash_entry_t *orig_entry = orig->array[i]; while(orig_entry) { *new_entry = &new_vals[j++]; (*new_entry)->hash = orig_entry->hash; (*new_entry)->key = orig_entry->key; (*new_entry)->klen = orig_entry->klen; (*new_entry)->val = orig_entry->val; new_entry = &((*new_entry)->next); orig_entry = orig_entry->next; } *new_entry = NULL; } return ht; } AXIS2_EXTERN void *AXIS2_CALL axutil_hash_get( axutil_hash_t *ht, const void *key, axis2_ssize_t klen) { axutil_hash_entry_t *he; he = *axutil_hash_find_entry(ht, key, klen, NULL); if(he) return (void *)he->val; else return NULL; } AXIS2_EXTERN void AXIS2_CALL axutil_hash_set( axutil_hash_t *ht, const void *key, axis2_ssize_t klen, const void *val) { axutil_hash_entry_t **hep; hep = axutil_hash_find_entry(ht, key, klen, val); if(*hep) { if(!val) { /* delete entry */ axutil_hash_entry_t *old = *hep; *hep = (*hep)->next; old->next = ht->free; ht->free = old; --ht->count; } else { /* replace entry */ (*hep)->val = val; /* check that the collision rate isn't too high */ if(ht->count > ht->max) { axutil_hash_expand_array(ht); } } } /* else key not present and val==NULL */ } AXIS2_EXTERN unsigned int AXIS2_CALL axutil_hash_count( axutil_hash_t *ht) { return ht->count; } AXIS2_EXTERN axutil_hash_t *AXIS2_CALL axutil_hash_overlay( const axutil_hash_t *overlay, const axutil_env_t *env, const axutil_hash_t *base) { return axutil_hash_merge(overlay, env, base, NULL, NULL); } AXIS2_EXTERN axutil_hash_t *AXIS2_CALL axutil_hash_merge( const axutil_hash_t *overlay, const axutil_env_t *env, const axutil_hash_t *base, void * (*merger)( const axutil_env_t *env, const void *key, axis2_ssize_t klen, const void *h1_val, const void *h2_val, const void *data), const void *data) { axutil_hash_t *res; axutil_hash_entry_t *new_vals = NULL; axutil_hash_entry_t *iter; axutil_hash_entry_t *ent; unsigned int i, k; #if AXIS2_POOL_DEBUG /* we don't copy keys and values, so it's necessary that * overlay->a.env and base->a.env have a life span at least * as long as p */ if (!axutil_env_is_ancestor(overlay->env, p)) { fprintf(stderr, "axutil_hash_merge: overlay's env is not an ancestor of p\n"); abort(); } if (!axutil_env_is_ancestor(base->env, p)) { fprintf(stderr, "axutil_hash_merge: base's env is not an ancestor of p\n"); abort(); } #endif res = AXIS2_MALLOC(env->allocator, sizeof(axutil_hash_t)); res->env = env; axutil_env_increment_ref((axutil_env_t*)env); res->free = NULL; res->hash_func = base->hash_func; res->count = base->count; res->max = (overlay->max > base->max) ? overlay->max : base->max; if(base->count + overlay->count > res->max) { res->max = res->max * 2 + 1; } res->array = axutil_hash_alloc_array(res, res->max); for(k = 0; k <= base->max; k++) { for(iter = base->array[k]; iter; iter = iter->next) { i = iter->hash & res->max; new_vals = AXIS2_MALLOC(env->allocator, sizeof(axutil_hash_entry_t)); new_vals->klen = iter->klen; new_vals->key = iter->key; new_vals->val = iter->val; new_vals->hash = iter->hash; new_vals->next = res->array[i]; res->array[i] = new_vals; } } for(k = 0; k <= overlay->max; k++) { for(iter = overlay->array[k]; iter; iter = iter->next) { i = iter->hash & res->max; for(ent = res->array[i]; ent; ent = ent->next) { if((ent->klen == iter->klen) && (memcmp(ent->key, iter->key, iter->klen) == 0)) { if(merger) { ent->val = (*merger)(env, iter->key, iter->klen, iter->val, ent->val, data); } else { ent->val = iter->val; } break; } } if(!ent) { new_vals = AXIS2_MALLOC(env->allocator, sizeof(axutil_hash_entry_t)); new_vals->klen = iter->klen; new_vals->key = iter->key; new_vals->val = iter->val; new_vals->hash = iter->hash; new_vals->next = res->array[i]; res->array[i] = new_vals; res->count++; } } } return res; } AXIS2_EXTERN axis2_bool_t AXIS2_CALL axutil_hash_contains_key( axutil_hash_t *ht, const axutil_env_t *env, const axis2_char_t *key) { axutil_hash_index_t *i = NULL; for(i = axutil_hash_first(ht, env); i; i = axutil_hash_next(env, i)) { const void *v = NULL; const axis2_char_t *key_l = NULL; axutil_hash_this(i, &v, NULL, NULL); key_l = (const axis2_char_t *)v; if(0 == axutil_strcmp(key, key_l)) return AXIS2_TRUE; } return AXIS2_FALSE; } /* void axutil_hash_entry_free( const axutil_env_t *env, axutil_hash_entry_t *hash_entry) { if (!hash_entry) return; if (hash_entry->next) { axutil_hash_entry_free(env, hash_entry->next); } AXIS2_FREE(env->allocator, hash_entry); return; } */ AXIS2_EXTERN void AXIS2_CALL axutil_hash_free( axutil_hash_t *ht, const axutil_env_t *env) { unsigned int i = 0; if(ht) { for(i = 0; i <= ht->max; i++) { axutil_hash_entry_t *next = NULL; axutil_hash_entry_t *current = ht->array[i]; while(current) { next = current->next; AXIS2_FREE(env->allocator, current); current = NULL; current = next; } } if(ht->free) { axutil_hash_entry_t *next = NULL; axutil_hash_entry_t *current = ht->free; while(current) { next = current->next; AXIS2_FREE(env->allocator, current); current = NULL; current = next; } } if(ht->env) { /*since we now keep a ref count in env and incrementing it *inside hash_make we need to free the env.Depending on the situation the env struct is freed or ref count will be decremented.*/ axutil_free_thread_env((axutil_env_t*)(ht->env)); ht->env = NULL; } AXIS2_FREE(env->allocator, (ht->array)); AXIS2_FREE(env->allocator, ht); } return; } AXIS2_EXTERN void AXIS2_CALL axutil_hash_free_void_arg( void *ht_void, const axutil_env_t *env) { unsigned int i = 0; axutil_hash_t *ht = (axutil_hash_t *)ht_void; if(ht) { for(i = 0; i < ht->max; i++) { axutil_hash_entry_t *next = NULL; axutil_hash_entry_t *current = ht->array[i]; while(current) { next = current->next; AXIS2_FREE(env->allocator, current); current = next; } } AXIS2_FREE(env->allocator, (ht->array)); AXIS2_FREE(env->allocator, ht); } return; } AXIS2_EXTERN void AXIS2_CALL axutil_hash_set_env( axutil_hash_t * ht, const axutil_env_t * env) { AXIS2_ENV_CHECK(env, AXIS2_FAILURE); if(ht) { if(ht->env) { /*since we now keep a ref count in env and incrementing it *inside hash_make we need to free the env.Depending on the situation the env struct is freed or ref count will be decremented.*/ axutil_free_thread_env((axutil_env_t*)(ht->env)); ht->env = NULL; } ht->env = env; axutil_env_increment_ref((axutil_env_t*)env); } }