/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com */ #include "common.h" #include "libimobiledevice-glue/sha.h" #include "fixedint.h" /* the K array */ static const uint32_t K[64] = { 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL }; /* Various logical functions */ #define RORc(x, y) \ ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | \ ((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL) #define STORE32H(x, y) \ { (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \ (y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); } #define LOAD32H(x, y) \ { x = ((unsigned long)((y)[0] & 255)<<24) | \ ((unsigned long)((y)[1] & 255)<<16) | \ ((unsigned long)((y)[2] & 255)<<8) | \ ((unsigned long)((y)[3] & 255)); } #define STORE64H(x, y) \ { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \ (y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \ (y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \ (y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); } #define Ch(x,y,z) (z ^ (x & (y ^ z))) #define Maj(x,y,z) (((x | y) & z) | (x & y)) #define S(x, n) RORc((x),(n)) #define R(x, n) (((x)&0xFFFFFFFFUL)>>(n)) #define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22)) #define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25)) #define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3)) #define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10)) #ifndef MIN #define MIN(x, y) ( ((x)<(y))?(x):(y) ) #endif /* compress 256-bits */ static int sha256_compress(sha256_context * md, unsigned char *buf) { uint32_t S[8], W[64], t0, t1; uint32_t t; int i; /* copy state into S */ for (i = 0; i < 8; i++) { S[i] = md->state[i]; } /* copy the state into 512-bits into W[0..15] */ for (i = 0; i < 16; i++) { LOAD32H(W[i], buf + (4*i)); } /* fill W[16..63] */ for (i = 16; i < 64; i++) { W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16]; } /* Compress */ #define RND(a,b,c,d,e,f,g,h,i) \ t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \ t1 = Sigma0(a) + Maj(a, b, c); \ d += t0; \ h = t0 + t1; for (i = 0; i < 64; ++i) { RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i); t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4]; S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t; } #undef RND /* feedback */ for (i = 0; i < 8; i++) { md->state[i] = md->state[i] + S[i]; } return 0; } /** Initialize the hash state @param md The hash state you wish to initialize @return CRYPT_OK if successful */ int sha256_init(sha256_context * md) { if (md == NULL) return 1; md->curlen = 0; md->length = 0; md->state[0] = 0x6A09E667UL; md->state[1] = 0xBB67AE85UL; md->state[2] = 0x3C6EF372UL; md->state[3] = 0xA54FF53AUL; md->state[4] = 0x510E527FUL; md->state[5] = 0x9B05688CUL; md->state[6] = 0x1F83D9ABUL; md->state[7] = 0x5BE0CD19UL; md->num_dwords = 8; return 0; } /** Process a block of memory though the hash @param md The hash state @param data The data to hash @param inlen The length of the data (octets) @return 0 if successful */ int sha256_update (sha256_context * md, const void *data, size_t inlen) { const unsigned char* in = (const unsigned char*)data; size_t n; size_t i; int err; if (md == NULL) return 1; if (in == NULL) return 1; if (md->curlen > sizeof(md->buf)) { return 1; } while (inlen > 0) { if (md->curlen == 0 && inlen >= 64) { if ((err = sha256_compress (md, (unsigned char *)in)) != 0) { return err; } md->length += 64 * 8; in += 64; inlen -= 64; } else { n = MIN(inlen, (64 - md->curlen)); for (i = 0; i < n; i++) { md->buf[i + md->curlen] = in[i]; } md->curlen += n; in += n; inlen -= n; if (md->curlen == 64) { if ((err = sha256_compress (md, md->buf)) != 0) { return err; } md->length += 8*64; md->curlen = 0; } } } return 0; } /** Terminate the hash to get the digest @param md The hash state @param out [out] The destination of the hash (32 bytes) @return 0 if successful */ int sha256_final(sha256_context * md, unsigned char *out) { int i; if (md == NULL) return 1; if (out == NULL) return 1; if (md->curlen >= sizeof(md->buf)) { return 1; } /* increase the length of the message */ md->length += md->curlen * 8; /* append the '1' bit */ md->buf[md->curlen++] = (unsigned char)0x80; /* if the length is currently above 56 bytes we append zeros * then compress. Then we can fall back to padding zeros and length * encoding like normal. */ if (md->curlen > 56) { while (md->curlen < 64) { md->buf[md->curlen++] = (unsigned char)0; } sha256_compress(md, md->buf); md->curlen = 0; } /* pad upto 56 bytes of zeroes */ while (md->curlen < 56) { md->buf[md->curlen++] = (unsigned char)0; } /* store length */ STORE64H(md->length, md->buf+56); sha256_compress(md, md->buf); /* copy output */ for (i = 0; i < md->num_dwords; i++) { STORE32H(md->state[i], out+(4*i)); } return 0; } int sha256(const unsigned char *message, size_t message_len, unsigned char *out) { sha256_context ctx; int ret; if ((ret = sha256_init(&ctx))) return ret; if ((ret = sha256_update(&ctx, message, message_len))) return ret; if ((ret = sha256_final(&ctx, out))) return ret; return 0; } int sha224_init(sha224_context * md) { if (md == NULL) return 1; md->curlen = 0; md->length = 0; md->state[0] = 0xc1059ed8UL; md->state[1] = 0x367cd507UL; md->state[2] = 0x3070dd17UL; md->state[3] = 0xf70e5939UL; md->state[4] = 0xffc00b31UL; md->state[5] = 0x68581511UL; md->state[6] = 0x64f98fa7UL; md->state[7] = 0xbefa4fa4UL; md->num_dwords = 6; return 0; } int sha224_update(sha224_context * md, const void *data, size_t inlen) { return sha256_update(md, data, inlen); } int sha224_final(sha224_context * md, unsigned char* out) { return sha256_final(md, out); } int sha224(const unsigned char *message, size_t message_len, unsigned char *out) { sha224_context ctx; int ret; if ((ret = sha224_init(&ctx))) return ret; if ((ret = sha224_update(&ctx, message, message_len))) return ret; if ((ret = sha224_final(&ctx, out))) return ret; return 0; }