/* * plist.c * Builds plist XML structures. * * Copyright (c) 2008 Zach C. All Rights Reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include "utils.h" #include "plist.h" const char *plist_base = "\n\ \n\ \n\ \0"; /** Formats a block of text to be a given indentation and width. * * The total width of the return string will be depth + cols. * * @param buf The string to format. * @param cols The number of text columns for returned block of text. * @param depth The number of tabs to indent the returned block of text. * * @return The formatted string. */ char *format_string(const char *buf, int cols, int depth) { int colw = depth + cols + 1; int len = strlen(buf); int nlines = len / cols + 1; char *new_buf = (char *) malloc(nlines * colw + depth + 1); int i = 0; int j = 0; assert(cols >= 0); assert(depth >= 0); // Inserts new lines and tabs at appropriate locations for (i = 0; i < nlines; i++) { new_buf[i * colw] = '\n'; for (j = 0; j < depth; j++) new_buf[i * colw + 1 + j] = '\t'; memcpy(new_buf + i * colw + 1 + depth, buf + i * cols, cols); } new_buf[len + (1 + depth) * nlines] = '\n'; // Inserts final row of indentation and termination character for (j = 0; j < depth; j++) new_buf[len + (1 + depth) * nlines + 1 + j] = '\t'; new_buf[len + (1 + depth) * nlines + depth + 1] = '\0'; return new_buf; } /** Creates a new plist XML document. * * @return The plist XML document. */ xmlDocPtr new_plist() { char *plist = strdup(plist_base); xmlDocPtr plist_xml = xmlReadMemory(plist, strlen(plist), NULL, NULL, 0); if (!plist_xml) return NULL; free(plist); return plist_xml; } /** Destroys a previously created XML document. * * @param plist The XML document to destroy. */ void free_plist(xmlDocPtr plist) { if (!plist) return; xmlFreeDoc(plist); } /** Adds a new node as a child to a given node. * * This is a lower level function so you probably want to use * add_key_str_dict_element, add_key_dict_node or add_key_data_dict_element * instead. * * @param plist The plist XML document to which the to_node belongs. * @param name The name of the new node. * @param content The string containing the text node of the new node. * @param to_node The node to attach the child node to. If none is given, the * root node of the given document is used. * @param depth The number of tabs to indent the new node. * * @return The newly created node. */ xmlNode *add_child_to_plist(xmlDocPtr plist, const char *name, const char *content, xmlNode * to_node, int depth) { int i = 0; xmlNode *child; if (!plist) return NULL; assert(depth >= 0); if (!to_node) to_node = xmlDocGetRootElement(plist); for (i = 0; i < depth; i++) { xmlNodeAddContent(to_node, "\t"); } child = xmlNewChild(to_node, NULL, name, content); xmlNodeAddContent(to_node, "\n"); return child; } /** Adds a string key-pair to a plist XML document. * * @param plist The plist XML document to add the new node to. * @param dict The dictionary node within the plist XML document to add the new node to. * @param key The string containing the key value. * @param value The string containing the value. * @param depth The number of tabs to indent the new node. * * @return The newly created key node. */ xmlNode *add_key_str_dict_element(xmlDocPtr plist, xmlNode * dict, const char *key, const char *value, int depth) { xmlNode *keyPtr; keyPtr = add_child_to_plist(plist, "key", key, dict, depth); add_child_to_plist(plist, "string", value, dict, depth); return keyPtr; } /** Adds a new dictionary key-pair to a plist XML document. * * @param plist The plist XML document to add the new node to. * @param dict The dictionary node within the plist XML document to add the new node to. * @param key The string containing the key value. * @param value The string containing the value. * @param depth The number of tabs to indent the new node. * * @return The newly created dict node. */ xmlNode *add_key_dict_node(xmlDocPtr plist, xmlNode * dict, const char *key, const char *value, int depth) { xmlNode *child; add_child_to_plist(plist, "key", key, dict, depth); child = add_child_to_plist(plist, "dict", value, dict, depth); return child; } /** Adds a new data dictionary key-pair to a plist XML document. * * @param plist The plist XML document to add the new node to. * @param dict The dictionary node within the plist XML document to add the new node to. * @param key The string containing the key value. * @param value The string containing the value. * @param depth The number of tabs to indent the new node. * * @return The newly created key node. */ xmlNode *add_key_data_dict_element(xmlDocPtr plist, xmlNode * dict, const char *key, const char *value, int depth) { xmlNode *keyPtr; keyPtr = add_child_to_plist(plist, "key", key, dict, depth); add_child_to_plist(plist, "data", format_string(value, 60, depth), dict, depth); return keyPtr; } /** Reads a set of keys and strings into an array from a plist XML document. * * @param dict The root XMLNode of a plist XML document to be read. * * @return An array where each even number is a key and the odd numbers are * values. If the odd number is \0, that's the end of the list. */ char **read_dict_element_strings(xmlNode * dict) { char **return_me = NULL, **old = NULL; int current_length = 0; int current_pos = 0; xmlNode *dict_walker; for (dict_walker = dict->children; dict_walker; dict_walker = dict_walker->next) { if (!xmlStrcmp(dict_walker->name, "key")) { current_length += 2; old = return_me; return_me = realloc(return_me, sizeof(char *) * current_length); if (!return_me) { free(old); return NULL; } return_me[current_pos++] = xmlNodeGetContent(dict_walker); return_me[current_pos++] = xmlNodeGetContent(dict_walker->next->next); } } old = return_me; return_me = realloc(return_me, sizeof(char *) * (current_length + 1)); return_me[current_pos] = NULL; return return_me; } /** Destroys a dictionary as returned by read_dict_element_strings */ void free_dictionary(char **dictionary) { int i = 0; if (!dictionary) return; for (i = 0; dictionary[i]; i++) { free(dictionary[i]); } free(dictionary); } /* * Binary propertylist code follows */ /* * This is how parsing a bplist is going to have to work: * - The entire binary plist is going to have to be in memory. * - A function, parse_nodes(), will have to be a recursive function * which iterates over the binary plist and reads in elements into bplist_node structs * and handles them accordingly. The end result should be a somewhat-hierarchical layout * of bplist_nodes. * - parse_nodes() will return the first node it encounters, which is usually the "root" node. */ uint32_t uipow(uint32_t value, uint32_t power) { if (!power) return 1; int i = 0, oVal = value; for (i = 1; i < power; i++) { value *= oVal; } return value; } void byte_convert(char *address, size_t size) { int i = 0, j = 0; char tmp = '\0'; for (i = 0; i < (size / 2); i++) { tmp = address[i]; j = ((size - 1) + 0) - i; address[i] = address[j]; address[j] = tmp; } } bplist_node *parse_raw_node(const char *bpbuffer, uint32_t bplength, uint32_t * position, uint8_t ref_size) { if (!position || !bpbuffer || !bplength) return NULL; uint8_t modifier = 0; bplist_node *new_node = (bplist_node *) malloc(sizeof(bplist_node)); bplist_node *length_stupidity = NULL; memset(new_node, 0, sizeof(bplist_node)); // initialize the new struct int myPos = *position; if (myPos == bplength || (myPos + 1) == bplength) { free(new_node); return NULL; } // end of string uint32_t length = 0; if (!myPos) { if (strncmp(bpbuffer, "bplist00", strlen("bplist00"))) { return NULL; // badness! } myPos += strlen("bplist00"); } // Get the node's type. if (bpbuffer[myPos] == BPLIST_DATE) { // handle date separately, but do it as a real // better handling of date; basically interpret as real or double new_node->type = BPLIST_DATE; new_node->length = 8; // always 8 for "date" (Apple intended it, not me) myPos++; memcpy(&new_node->realval, bpbuffer + myPos, sizeof(new_node->realval)); byte_convert((char *) &new_node->realval, sizeof(new_node->realval)); myPos += new_node->length; *position = myPos; return new_node; } new_node->type = bpbuffer[myPos] & BPLIST_MASK; new_node->length = bpbuffer[myPos] & BPLIST_FILL; if (!new_node->type) { // what? check if it's a boolean. if (bpbuffer[myPos] == BPLIST_TRUE || bpbuffer[myPos] == BPLIST_FALSE) { // okay, so it is. Carry on. new_node->type = bpbuffer[myPos]; new_node->length = 0; } else { // er, what? we have a bad type here. Return NULL. free(new_node); //printf("parse_raw_node: lol type: type given %x\n", bpbuffer[myPos]); return NULL; } } myPos++; // puts us in the data. if (new_node->length == BPLIST_FILL) { // Data happens to contain length... // what? you're going to make me parse an int for the length. You suck. *position = myPos; length_stupidity = parse_raw_node(bpbuffer, bplength, &myPos, ref_size); switch (length_stupidity->length) { case sizeof(uint8_t): new_node->length = length_stupidity->intval8; break; case sizeof(uint16_t): new_node->length = length_stupidity->intval16; break; case sizeof(uint32_t): new_node->length = length_stupidity->intval32; break; case sizeof(uint64_t): new_node->length = length_stupidity->intval64; break; default: free(new_node); free(length_stupidity); return NULL; } // There, we have our fucking length now. *position = myPos; free(length_stupidity); // cleanup } // Now we're in the data. // Error-checking sorta if ((myPos + new_node->length) >= bplength) { new_node->length = bplength - myPos; // truncate the object } // And now for the greatest show on earth: the giant fucking switch statement. switch (new_node->type) { case BPLIST_INT: new_node->length = uipow(2, new_node->length); // make length less misleading switch (new_node->length) { case sizeof(uint8_t): new_node->intval8 = bpbuffer[myPos]; break; case sizeof(uint16_t): memcpy(&new_node->intval16, bpbuffer + myPos, sizeof(uint16_t)); new_node->intval16 = ntohs(new_node->intval16); break; case sizeof(uint32_t): memcpy(&new_node->intval32, bpbuffer + myPos, sizeof(uint32_t)); new_node->intval32 = ntohl(new_node->intval32); break; case sizeof(uint64_t): memcpy(&new_node->intval64, bpbuffer + myPos, sizeof(uint64_t)); byte_convert((char *) &new_node->intval64, sizeof(uint64_t)); break; default: free(new_node); printf("parse_raw_node: lol: invalid int: size given %lu\n", (long unsigned int) new_node->length); printf("parse_raw_node: lol: by the way sizeof(uint64) = %i\n", sizeof(uint64_t)); return NULL; } break; case BPLIST_REAL: new_node->length = uipow(2, new_node->length); memcpy(&new_node->realval, bpbuffer + myPos, new_node->length); // XXX: probable buffer overflow here //new_node->realval = bpbuffer[myPos]; // why not byte_convert((char *) &new_node->realval, sizeof(double)); break; case BPLIST_DICT: /* returning a raw dict, it forward-references, so. */ new_node->length = new_node->length * 2; // dicts lie case BPLIST_ARRAY: /* returning a raw array, it forward-references, so. */ new_node->intval8 = ref_size; // in arrays and dicts, the "ref size" alluded to in the trailer applies, and should be stored in intval8 so as to save space. case BPLIST_STRING: case BPLIST_DATA: default: /* made to hold raw data. */ modifier = (new_node->intval8 > 0) ? new_node->intval8 : 1; new_node->strval = (char *) malloc(sizeof(char) * (new_node->length * modifier)); memcpy(new_node->strval, bpbuffer + myPos, (new_node->length * modifier)); break; case BPLIST_UNICODE: new_node->unicodeval = (wchar_t *) malloc(sizeof(wchar_t) * new_node->length); memcpy(new_node->unicodeval, bpbuffer + myPos, new_node->length); break; } myPos += new_node->length; *position = myPos; return new_node; } void print_bytes(char *val, size_t size) { int i = 0; for (i = 0; i < size; i++) { printf("Byte %i: 0x%x\n", i, val[i]); } } bplist_node *parse_nodes(const char *bpbuffer, uint32_t bplength, uint32_t * position) { bplist_node **nodeslist = NULL, **newaddr = NULL; bplist_node *new_node = NULL, *root_node = NULL; uint32_t nodeslength = 0; uint8_t offset_size = 0, dict_param_size = 0; offset_size = bpbuffer[bplength - 26]; dict_param_size = bpbuffer[bplength - 25]; uint64_t current_offset = 0; //uint64_t num_objects = *(bpbuffer+(bplength-24)), root_object = *(bpbuffer+(bplength-16)), offset_table_index = *(bpbuffer+(bplength-8)); uint64_t num_objects = 0, root_object = 0, offset_table_index = 0; memcpy(&num_objects, bpbuffer + bplength - 24, sizeof(uint64_t)); memcpy(&root_object, bpbuffer + bplength - 16, sizeof(uint64_t)); memcpy(&offset_table_index, bpbuffer + bplength - 8, sizeof(uint64_t)); byte_convert((char *) &num_objects, sizeof(uint64_t)); byte_convert((char *) &root_object, sizeof(uint64_t)); byte_convert((char *) &offset_table_index, sizeof(uint64_t)); log_debug_msg("Offset size: %i\nGiven: %i\n", offset_size, bpbuffer[bplength - 26]); log_debug_msg("Ref size: %i\nGiven: %i\n", dict_param_size, bpbuffer[bplength - 25]); log_debug_msg("Number of objects: %lli\nGiven: %llu\n", num_objects, *(bpbuffer + bplength - 24)); log_debug_msg("Root object index: %lli\nGiven: %llu\n", root_object, *(bpbuffer + bplength - 16)); log_debug_msg("Offset table index: %lli\nGiven: %llu\n", offset_table_index, *(bpbuffer + bplength - 8)); log_debug_msg("Size of uint64: %i\n", sizeof(uint64_t)); int i = 0, j = 0, k = 0, str_i = 0, str_j = 0; uint32_t index1 = 0, index2 = 0; nodeslist = (bplist_node **) malloc(sizeof(bplist_node *) * num_objects); if (!nodeslist) return NULL; for (i = 0; i < num_objects; i++) { memcpy(¤t_offset, bpbuffer + (offset_table_index + (i * offset_size)), offset_size); //current_offset = (offset_size == 2) ? ntohs(current_offset) : (offset_size == 4) ? ntohl(current_offset) : current_offset; //if (offset_size == 8) byte_convert(¤t_offset, 8); byte_convert((char *) ¤t_offset, (offset_size <= sizeof(current_offset)) ? offset_size : sizeof(current_offset)); log_debug_msg("parse_nodes: current_offset = %x\n", current_offset); nodeslist[i] = parse_raw_node(bpbuffer, bplength, (uint32_t *) & current_offset, dict_param_size); log_debug_msg("parse_nodes: parse_raw_node done\n"); } for (i = 0; i < num_objects; i++) { // set elements for dicts and arrays and leave the rest alone log_debug_msg("parse_nodes: on node %i\n", i); switch (nodeslist[i]->type) { case BPLIST_DICT: log_debug_msg("parse_nodes: dictionary found\n"); nodeslist[i]->subnodes = (bplist_node **) malloc(sizeof(bplist_node) * nodeslist[i]->length); for (j = 0; j < (nodeslist[i]->length / 2); j++) { str_i = j * nodeslist[i]->intval8; str_j = (j + (nodeslist[i]->length / 2)) * nodeslist[i]->intval8; memcpy(&index1, nodeslist[i]->strval + str_i, nodeslist[i]->intval8); memcpy(&index2, nodeslist[i]->strval + str_j, nodeslist[i]->intval8); //index1 = (dict_param_size == 1) ? index1 : (dict_param_size == 2) ? ntohs(index1) : (dict_param_size == 4) ? ntohl(index1) : index1; //index2 = (dict_param_size == 1) ? index2 : (dict_param_size == 2) ? ntohs(index2) : (dict_param_size == 4) ? ntohl(index2) : index2; byte_convert((char *) &index1, (dict_param_size <= sizeof(index1)) ? dict_param_size : sizeof(index2)); byte_convert((char *) &index2, (dict_param_size <= sizeof(index2)) ? dict_param_size : sizeof(index2)); //printf("parse_nodes: key index %i value %i\n", index1, index2); //printf("parse_nodes: key type %x and length %i\n", nodeslist[index1]->type, nodeslist[index1]->length); //printf("parse_nodes: value type %x and length %i\n", nodeslist[index2]->type, nodeslist[index2]->length); nodeslist[i]->subnodes[k++] = nodeslist[index1]; nodeslist[i]->subnodes[k++] = nodeslist[index2]; } nodeslist[i]->length = nodeslist[i]->length / 2; free(nodeslist[i]->strval); k = 0; break; case BPLIST_ARRAY: log_debug_msg("parse_nodes: array found\n"); nodeslist[i]->subnodes = (bplist_node **) malloc(sizeof(bplist_node) * nodeslist[i]->length); // memory allocation helps a lot when storing data for (j = 0; j < nodeslist[i]->length; j++) { log_debug_msg("parse_nodes: array index %i\n", j); str_j = j * nodeslist[i]->intval8; //index1 = nodeslist[i]->strval[j]; memcpy(&index1, nodeslist[i]->strval + str_j, nodeslist[i]->intval8); log_debug_msg("parse_nodes: post-memcpy\n"); //index1 = (dict_param_size == 1) ? index1 : (dict_param_size == 2) ? ntohs(index1) : (dict_param_size == 4) ? ntohl(index1) : index1; byte_convert((char *) &index1, (dict_param_size <= sizeof(index1)) ? dict_param_size : sizeof(index1)); log_debug_msg("parse_nodes: post-ntohl\nindex1 = %i\n", index1); nodeslist[i]->subnodes[j] = nodeslist[index1]; log_debug_msg("parse_nodes: post-assignment\n"); } free(nodeslist[i]->strval); break; default: //printf("lol... type %x\n", nodeslist[i]->type); break; } // those are the only two we need to correct for. } root_node = nodeslist[root_object]; return root_node; } struct plist_data { union { char boolval; uint8_t intval8; uint16_t intval16; uint32_t intval32; uint64_t intval64; float realval32; double realval64; char *strval; wchar_t *unicodeval; char *buff; }; int index; plist_type type; }; void plist_new_plist(plist_t* plist) { if (*plist != NULL) return; struct plist_data* data = (struct plist_data*)calloc(sizeof(struct plist_data), 1); data->type = PLIST_PLIST; *plist = g_node_new (data); } void plist_new_dict_in_plist(plist_t plist, dict_t* dict) { if (!plist || *dict) return; struct plist_data* data = (struct plist_data*)calloc(sizeof(struct plist_data), 1); data->type = PLIST_DICT; *dict = g_node_new (data); g_node_append(plist, *dict); } void plist_new_array_in_plist(plist_t plist, int length, plist_type type, void** values, array_t* array) { } void plist_add_dict_element(dict_t dict, char* key, plist_type type, void* value) { if (!dict || !key || !value) return; struct plist_data* data = (struct plist_data*)calloc(sizeof(struct plist_data), 1); data->type = PLIST_KEY; data->strval = strdup(key); GNode* keynode = g_node_new (data); g_node_append(dict, keynode); //now handle value struct plist_data* val = (struct plist_data*)calloc(sizeof(struct plist_data), 1); val->type = type; switch (type) { case PLIST_BOOLEAN : val->boolval = *((char*)value); break; case PLIST_UINT8 : val->intval8 = *((uint8_t*)value); break; case PLIST_UINT16 : val->intval16 = *((uint16_t*)value); break; case PLIST_UINT32 : val->intval32 = *((uint32_t*)value); break; case PLIST_UINT64 : val->intval64 = *((uint64_t*)value); break; case PLIST_FLOAT32 : val->realval32 = *((float*)value); break; case PLIST_FLOAT64 : val->realval64 = *((double*)value); break; case PLIST_STRING : val->strval = strdup((char*) value); break; case PLIST_UNICODE : val->unicodeval = wcsdup((wchar_t*) value); break; case PLIST_DATA : val->buff = strdup((char*) value); break; case PLIST_ARRAY : case PLIST_DICT : case PLIST_DATE : case PLIST_PLIST : default: break; } GNode* valnode = g_node_new (val); g_node_append(dict, valnode); } void plist_free(plist_t plist) { g_node_destroy(plist); } void node_to_xml (GNode *node, gpointer data) { if (!node) return; struct plist_data* node_data = (struct plist_data*)node->data; xmlNodePtr child_node = NULL; char isStruct = FALSE; gchar* tag = NULL; gchar* val = NULL; switch (node_data->type) { case PLIST_BOOLEAN : { if (node_data->boolval) tag = "true"; else tag = "false"; } break; case PLIST_UINT8 : tag = "integer"; val = g_strdup_printf("%u", node_data->intval8); break; case PLIST_UINT16 : tag = "integer"; val = g_strdup_printf("%u", node_data->intval16); break; case PLIST_UINT32 : tag = "integer"; val = g_strdup_printf("%u", node_data->intval32); break; case PLIST_UINT64 : tag = "integer"; val = g_strdup_printf("%lu", (long unsigned int)node_data->intval64); break; case PLIST_FLOAT32 : tag = "real"; val = g_strdup_printf("%f", node_data->realval32); break; case PLIST_FLOAT64 : tag = "real"; val = g_strdup_printf("%Lf", (long double)node_data->intval64); break; case PLIST_STRING : tag = "string"; val = g_strdup(node_data->strval); break; case PLIST_UNICODE : tag = "string"; val = g_strdup((gchar*)node_data->unicodeval); break; case PLIST_KEY : tag = "key"; val = g_strdup((gchar*)node_data->strval); break; case PLIST_DATA : tag = "data"; val = format_string(node_data->buff, 60, 0); break; case PLIST_ARRAY : tag = "array"; isStruct = TRUE; break; case PLIST_DICT : tag = "dict"; isStruct = TRUE; break; case PLIST_PLIST : tag = "plist"; isStruct = TRUE; break; case PLIST_DATE : //TODO : handle date tag default: break; } return; child_node = xmlNewChild(data, NULL, tag, val); gfree(val); if (isStruct) g_node_children_foreach(node, G_TRAVERSE_ALL, node_to_xml, child_node); return; } void xml_to_node (xmlNodePtr xml_node, GNode *plist_node) { xmlNodePtr node = NULL; struct plist_data* data = (struct plist_data*)calloc(sizeof(struct plist_data), 1); GNode* subnode = g_node_new (data); g_node_append(plist_node, subnode); for (node = xml_node->children; node; node = node->next) { if (!xmlStrcmp(node->name, "true")) { data->boolval = 1; data->type = PLIST_BOOLEAN; continue; } if (!xmlStrcmp(node->name, "false")) { data->boolval = 0; data->type = PLIST_BOOLEAN; continue; } if (!xmlStrcmp(node->name, "integer")) { char* strval = xmlNodeGetContent(node); data->intval64 = atoi(strval); data->type = PLIST_UINT64; continue; } if (!xmlStrcmp(node->name, "real")){ char* strval = xmlNodeGetContent(node); data->realval64 = atof(strval); data->type = PLIST_FLOAT64; continue; } if (!xmlStrcmp(node->name, "date")) continue;//TODO : handle date tag if (!xmlStrcmp(node->name, "string")) { data->strval = strdup(xmlNodeGetContent(node)); data->type = PLIST_STRING; continue; } if (!xmlStrcmp(node->name, "key")) { data->strval = strdup(xmlNodeGetContent(node)); data->type = PLIST_KEY; continue; } if (!xmlStrcmp(node->name, "data")) { data->buff = strdup(xmlNodeGetContent(node)); data->type = PLIST_DATA; continue; } if (!xmlStrcmp(node->name, "array")) { data->type = PLIST_ARRAY; xml_to_node (node, subnode); continue; } if (!xmlStrcmp(node->name, "dict")) { data->type = PLIST_DICT; xml_to_node (node, subnode); continue; } } } void plist_to_xml(plist_t plist, char** plist_xml) { if (!plist || !plist_xml || *plist_xml) return; xmlDocPtr plist_doc = new_plist(); xmlNodePtr root_node = xmlDocGetRootElement(plist_doc); g_node_children_foreach(plist, G_TRAVERSE_ALL, node_to_xml, root_node); int size = 0; xmlDocDumpMemory (plist_doc, (xmlChar**)plist_xml, &size); } void plist_to_bin(plist_t plist, char** plist_bin) { } void xml_to_plist(const char* plist_xml, plist_t* plist) { xmlDocPtr plist_doc = xmlReadMemory(plist_xml, strlen(plist_xml), NULL, NULL, 0); xmlNodePtr root_node = xmlDocGetRootElement(plist_doc); struct plist_data* data = (struct plist_data*)calloc(sizeof(struct plist_data), 1); *plist = g_node_new (data); data->type = PLIST_PLIST; xml_to_node (root_node, *plist); } void bin_to_plist(const char* plist_bin, plist_t* plist) { }