/* * plist.c * Builds plist XML structures. * * Copyright (c) 2008 Zach C. All Rights Reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include "utils.h" #include "plist.h" #include #include #include /********************************************** * * * Abstract Plist stuff * * * **********************************************/ /** Formats a block of text to be a given indentation and width. * * The total width of the return string will be depth + cols. * * @param buf The string to format. * @param cols The number of text columns for returned block of text. * @param depth The number of tabs to indent the returned block of text. * * @return The formatted string. */ char *format_string(const char *buf, int cols, int depth) { int colw = depth + cols + 1; int len = strlen(buf); int nlines = len / cols + 1; char *new_buf = (char *) malloc(nlines * colw + depth + 1); int i = 0; int j = 0; assert(cols >= 0); assert(depth >= 0); // Inserts new lines and tabs at appropriate locations for (i = 0; i < nlines; i++) { new_buf[i * colw] = '\n'; for (j = 0; j < depth; j++) new_buf[i * colw + 1 + j] = '\t'; memcpy(new_buf + i * colw + 1 + depth, buf + i * cols, cols); } new_buf[len + (1 + depth) * nlines] = '\n'; // Inserts final row of indentation and termination character for (j = 0; j < depth; j++) new_buf[len + (1 + depth) * nlines + 1 + j] = '\t'; new_buf[len + (1 + depth) * nlines + depth + 1] = '\0'; return new_buf; } /* * Binary propertylist code follows */ /* * This is how parsing a bplist is going to have to work: * - The entire binary plist is going to have to be in memory. * - A function, parse_nodes(), will have to be a recursive function * which iterates over the binary plist and reads in elements into bplist_node structs * and handles them accordingly. The end result should be a somewhat-hierarchical layout * of bplist_nodes. * - parse_nodes() will return the first node it encounters, which is usually the "root" node. */ void print_bytes(char *val, size_t size) { int i = 0; for (i = 0; i < size; i++) { printf("Byte %i: 0x%x\n", i, val[i]); } } struct plist_data { union { char boolval; uint64_t intval; double realval; char *strval; wchar_t *unicodeval; char *buff; }; uint64_t length; plist_type type; }; void plist_new_plist(plist_t * plist) { if (*plist != NULL) return; struct plist_data *data = (struct plist_data *) calloc(sizeof(struct plist_data), 1); data->type = PLIST_DICT; *plist = g_node_new(data); } void plist_new_dict_in_plist(plist_t plist, dict_t * dict) { if (!plist || *dict) return; struct plist_data *data = (struct plist_data *) calloc(sizeof(struct plist_data), 1); data->type = PLIST_DICT; *dict = g_node_new(data); g_node_append(plist, *dict); } void plist_new_array_in_plist(plist_t plist, int length, plist_type type, void **values, array_t * array) { } /** Adds a new key pair to a dict. * * @param dict The dict node in the plist. * @param key the key name of the key pair. * @param type The the type of the value in the key pair. * @param value a pointer to the actual buffer containing the value. WARNING : the buffer is supposed to match the type of the value * */ void plist_add_dict_element(dict_t dict, char *key, plist_type type, void *value) { if (!dict || !key || !value) return; struct plist_data *data = (struct plist_data *) calloc(sizeof(struct plist_data), 1); data->type = PLIST_KEY; data->strval = strdup(key); GNode *keynode = g_node_new(data); g_node_append(dict, keynode); //now handle value struct plist_data *val = (struct plist_data *) calloc(sizeof(struct plist_data), 1); val->type = type; switch (type) { case PLIST_BOOLEAN: val->boolval = *((char *) value); break; case PLIST_UINT: val->intval = *((uint64_t *) value); break; case PLIST_REAL: val->realval = *((double *) value); break; case PLIST_STRING: val->strval = strdup((char *) value); break; case PLIST_UNICODE: val->unicodeval = wcsdup((wchar_t *) value); break; case PLIST_DATA: val->buff = strdup((char *) value); break; case PLIST_ARRAY: case PLIST_DICT: case PLIST_DATE: default: break; } GNode *valnode = g_node_new(val); g_node_append(dict, valnode); } void plist_free(plist_t plist) { g_node_destroy(plist); } /********************************************** * * * Xml Plist stuff * * * **********************************************/ #include #include const char *plist_base = "\n\ \n\ \n\ \0"; struct xml_node { xmlNodePtr xml; uint32_t depth; }; /** Creates a new plist XML document. * * @return The plist XML document. */ xmlDocPtr new_plist() { char *plist = strdup(plist_base); xmlDocPtr plist_xml = xmlReadMemory(plist, strlen(plist), NULL, NULL, 0); if (!plist_xml) return NULL; free(plist); return plist_xml; } /** Destroys a previously created XML document. * * @param plist The XML document to destroy. */ void free_plist(xmlDocPtr plist) { if (!plist) return; xmlFreeDoc(plist); } void node_to_xml(GNode * node, gpointer xml_struct) { if (!node) return; struct xml_node *xstruct = (struct xml_node *) xml_struct; struct plist_data *node_data = (struct plist_data *) node->data; xmlNodePtr child_node = NULL; char isStruct = FALSE; gchar *tag = NULL; gchar *val = NULL; switch (node_data->type) { case PLIST_BOOLEAN: { if (node_data->boolval) tag = "true"; else tag = "false"; } break; case PLIST_UINT: tag = "integer"; val = g_strdup_printf("%lu", (long unsigned int) node_data->intval); break; case PLIST_REAL: tag = "real"; val = g_strdup_printf("%Lf", (long double) node_data->realval); break; case PLIST_STRING: tag = "string"; val = g_strdup(node_data->strval); break; case PLIST_UNICODE: tag = "string"; val = g_strdup((gchar *) node_data->unicodeval); break; case PLIST_KEY: tag = "key"; val = g_strdup((gchar *) node_data->strval); break; case PLIST_DATA: tag = "data"; val = format_string(node_data->buff, 60, xstruct->depth); break; case PLIST_ARRAY: tag = "array"; isStruct = TRUE; break; case PLIST_DICT: tag = "dict"; isStruct = TRUE; break; case PLIST_DATE: //TODO : handle date tag default: break; } int i = 0; for (i = 0; i < xstruct->depth; i++) { xmlNodeAddContent(xstruct->xml, "\t"); } child_node = xmlNewChild(xstruct->xml, NULL, tag, val); xmlNodeAddContent(xstruct->xml, "\n"); g_free(val); //add return for structured types if (node_data->type == PLIST_ARRAY || node_data->type == PLIST_DICT || node_data->type == PLIST_DATA) xmlNodeAddContent(child_node, "\n"); if (isStruct) { struct xml_node child = { child_node, xstruct->depth + 1 }; g_node_children_foreach(node, G_TRAVERSE_ALL, node_to_xml, &child); } //fix indent for structured types if (node_data->type == PLIST_ARRAY || node_data->type == PLIST_DICT || node_data->type == PLIST_DATA) { for (i = 0; i < xstruct->depth; i++) { xmlNodeAddContent(child_node, "\t"); } } return; } void xml_to_node(xmlNodePtr xml_node, GNode * plist_node) { xmlNodePtr node = NULL; for (node = xml_node->children; node; node = node->next) { while (node && !xmlStrcmp(node->name, "text")) node = node->next; if (!node) break; struct plist_data *data = (struct plist_data *) calloc(sizeof(struct plist_data), 1); GNode *subnode = g_node_new(data); g_node_append(plist_node, subnode); if (!xmlStrcmp(node->name, "true")) { data->boolval = 1; data->type = PLIST_BOOLEAN; continue; } if (!xmlStrcmp(node->name, "false")) { data->boolval = 0; data->type = PLIST_BOOLEAN; continue; } if (!xmlStrcmp(node->name, "integer")) { char *strval = xmlNodeGetContent(node); data->intval = atoi(strval); data->type = PLIST_UINT; continue; } if (!xmlStrcmp(node->name, "real")) { char *strval = xmlNodeGetContent(node); data->realval = atof(strval); data->type = PLIST_REAL; continue; } if (!xmlStrcmp(node->name, "date")) continue; //TODO : handle date tag if (!xmlStrcmp(node->name, "string")) { data->strval = strdup(xmlNodeGetContent(node)); data->type = PLIST_STRING; continue; } if (!xmlStrcmp(node->name, "key")) { data->strval = strdup(xmlNodeGetContent(node)); data->type = PLIST_KEY; continue; } if (!xmlStrcmp(node->name, "data")) { data->buff = strdup(xmlNodeGetContent(node)); data->type = PLIST_DATA; continue; } if (!xmlStrcmp(node->name, "array")) { data->type = PLIST_ARRAY; xml_to_node(node, subnode); continue; } if (!xmlStrcmp(node->name, "dict")) { data->type = PLIST_DICT; xml_to_node(node, subnode); continue; } } } void plist_to_xml(plist_t plist, char **plist_xml, uint32_t * length) { if (!plist || !plist_xml || *plist_xml) return; xmlDocPtr plist_doc = new_plist(); xmlNodePtr root_node = xmlDocGetRootElement(plist_doc); struct xml_node root = { root_node, 0 }; g_node_children_foreach(plist, G_TRAVERSE_ALL, node_to_xml, &root); xmlDocDumpMemory(plist_doc, (xmlChar **) plist_xml, length); } void xml_to_plist(const char *plist_xml, uint32_t length, plist_t * plist) { xmlDocPtr plist_doc = xmlReadMemory(plist_xml, length, NULL, NULL, 0); xmlNodePtr root_node = xmlDocGetRootElement(plist_doc); struct plist_data *data = (struct plist_data *) calloc(sizeof(struct plist_data), 1); *plist = g_node_new(data); data->type = PLIST_DICT; xml_to_node(root_node, *plist); } /********************************************** * * * Binary Plist stuff * * * **********************************************/ /* Magic marker and size. */ #define BPLIST_MAGIC "bplist" #define BPLIST_MAGIC_SIZE 6 #define BPLIST_VERSION "00" #define BPLIST_VERSION_SIZE 2 #define BPLIST_TRL_SIZE 26 #define BPLIST_TRL_OFFSIZE_IDX 0 #define BPLIST_TRL_PARMSIZE_IDX 1 #define BPLIST_TRL_NUMOBJ_IDX 2 #define BPLIST_TRL_ROOTOBJ_IDX 10 #define BPLIST_TRL_OFFTAB_IDX 18 enum { BPLIST_NULL = 0x00, BPLIST_TRUE = 0x08, BPLIST_FALSE = 0x09, BPLIST_FILL = 0x0F, /* will be used for length grabbing */ BPLIST_UINT = 0x10, BPLIST_REAL = 0x20, BPLIST_DATE = 0x30, BPLIST_DATA = 0x40, BPLIST_STRING = 0x50, BPLIST_UNICODE = 0x60, BPLIST_UID = 0x70, BPLIST_ARRAY = 0xA0, BPLIST_SET = 0xC0, BPLIST_DICT = 0xD0, BPLIST_MASK = 0xF0 }; void byte_convert(char *address, size_t size) { int i = 0, j = 0; char tmp = '\0'; for (i = 0; i < (size / 2); i++) { tmp = address[i]; j = ((size - 1) + 0) - i; address[i] = address[j]; address[j] = tmp; } } #include #define swap_n_bytes(x, n) \ n == 8 ? bswap_64(*(uint64_t *)(x)) : \ (n == 4 ? bswap_32(*(uint32_t *)(x)) : \ (n == 2 ? bswap_16(*(uint16_t *)(x)) : *(x) )) #define be64dec(x) bswap_64( *(uint64_t*)(x) ) #define get_needed_bytes(x) (x <= 1<<8 ? 1 : ( x <= 1<<16 ? 2 : ( x <= 1<<32 ? 4 : 8))) #define get_real_bytes(x) (x >> 32 ? 4 : 8) GNode *parse_uint_node(char *bnode, uint8_t size, char **next_object) { struct plist_data *data = (struct plist_data *) calloc(sizeof(struct plist_data), 1); size = 1 << size; // make length less misleading switch (size) { case sizeof(uint8_t): data->intval = bnode[0]; break; case sizeof(uint16_t): memcpy(&data->intval, bnode, size); data->intval = ntohs(data->intval); break; case sizeof(uint32_t): memcpy(&data->intval, bnode, size); data->intval = ntohl(data->intval); break; case sizeof(uint64_t): memcpy(&data->intval, bnode, size); byte_convert((char *) &data->intval, size); break; default: free(data); return NULL; }; *next_object = bnode + size; data->type = PLIST_UINT; return g_node_new(data); } GNode *parse_real_node(char *bnode, uint8_t size) { struct plist_data *data = (struct plist_data *) calloc(sizeof(struct plist_data), 1); size = 1 << size; // make length less misleading switch (size) { case sizeof(float): memcpy(&data->realval, bnode, size); byte_convert((char *) &data->realval, size); break; case sizeof(double): memcpy(&data->realval, bnode, size); byte_convert((char *) &data->realval, size); break; default: free(data); return NULL; } data->type = PLIST_REAL; return g_node_new(data); } GNode *parse_string_node(char *bnode, uint8_t size) { struct plist_data *data = (struct plist_data *) calloc(sizeof(struct plist_data), 1); data->type = PLIST_STRING; data->strval = (char *) malloc(sizeof(char) * (size + 1)); memcpy(data->strval, bnode, size); data->strval[size] = '\0'; return g_node_new(data); } GNode *parse_unicode_node(char *bnode, uint8_t size) { struct plist_data *data = (struct plist_data *) calloc(sizeof(struct plist_data), 1); data->type = PLIST_UNICODE; data->unicodeval = (wchar_t *) malloc(sizeof(wchar_t) * (size + 1)); memcpy(data->unicodeval, bnode, size); data->unicodeval[size] = '\0'; return g_node_new(data); } GNode *parse_data_node(char *bnode, uint64_t size, uint32_t ref_size) { struct plist_data *data = (struct plist_data *) calloc(sizeof(struct plist_data), 1); data->type = PLIST_DATA; data->length = size; data->buff = (char *) malloc(sizeof(char) * size); memcpy(data->buff, bnode, sizeof(char) * size); return g_node_new(data); } GNode *parse_dict_node(char *bnode, uint64_t size, uint32_t ref_size) { struct plist_data *data = (struct plist_data *) calloc(sizeof(struct plist_data), 1); data->type = PLIST_DICT; data->length = size; data->buff = (char *) malloc(sizeof(char) * size * ref_size * 2); memcpy(data->buff, bnode, sizeof(char) * size * ref_size * 2); return g_node_new(data); } GNode *parse_array_node(char *bnode, uint64_t size, uint32_t ref_size) { struct plist_data *data = (struct plist_data *) calloc(sizeof(struct plist_data), 1); data->type = PLIST_ARRAY; data->length = size; data->buff = (char *) malloc(sizeof(char) * size * ref_size); memcpy(data->buff, bnode, sizeof(char) * size * ref_size); return g_node_new(data); } plist_type plist_get_node_type(plist_t node) { return ((struct plist_data *) node->data)->type; } uint64_t plist_get_node_uint_val(plist_t node) { if (PLIST_UINT == plist_get_node_type(node)) return ((struct plist_data *) node->data)->intval; else return 0; } GNode *parse_bin_node(char *object, uint8_t dict_size, char **next_object) { if (!object) return NULL; uint16_t type = *object & 0xF0; uint64_t size = *object & 0x0F; object++; switch (type) { case BPLIST_NULL: switch (size) { case BPLIST_TRUE: { struct plist_data *data = (struct plist_data *) calloc(sizeof(struct plist_data), 1); data->type = PLIST_BOOLEAN; data->boolval = TRUE; return g_node_new(data); } case BPLIST_FALSE: { struct plist_data *data = (struct plist_data *) calloc(sizeof(struct plist_data), 1); data->type = PLIST_BOOLEAN; data->boolval = FALSE; return g_node_new(data); } case BPLIST_NULL: default: return NULL; } case BPLIST_UINT: return parse_uint_node(object, size, next_object); case BPLIST_REAL: return parse_real_node(object, size); case BPLIST_DATE: if (3 != size) return NULL; else return parse_real_node(object, size); case BPLIST_DATA: if (0x0F == size) { plist_t size_node = parse_bin_node(object, dict_size, &object); if (plist_get_node_type(size_node) != PLIST_UINT) return NULL; size = plist_get_node_uint_val(size_node); } return parse_data_node(object, size, dict_size); case BPLIST_STRING: if (0x0F == size) { plist_t size_node = parse_bin_node(object, dict_size, &object); if (plist_get_node_type(size_node) != PLIST_UINT) return NULL; size = plist_get_node_uint_val(size_node); } return parse_string_node(object, size); case BPLIST_UNICODE: if (0x0F == size) { plist_t size_node = parse_bin_node(object, dict_size, &object); if (plist_get_node_type(size_node) != PLIST_UINT) return NULL; size = plist_get_node_uint_val(size_node); } return parse_unicode_node(object, size); case BPLIST_UID: case BPLIST_ARRAY: if (0x0F == size) { plist_t size_node = parse_bin_node(object, dict_size, &object); if (plist_get_node_type(size_node) != PLIST_UINT) return NULL; size = plist_get_node_uint_val(size_node); } return parse_array_node(object, size, dict_size); case BPLIST_SET: case BPLIST_DICT: if (0x0F == size) { plist_t size_node = parse_bin_node(object, dict_size, &object); if (plist_get_node_type(size_node) != PLIST_UINT) return NULL; object++; size = plist_get_node_uint_val(size_node); } return parse_dict_node(object, size, dict_size); } return NULL; } gpointer copy_plist_data(gconstpointer src, gpointer data) { struct plist_data *srcdata = (struct plist_data *) src; struct plist_data *dstdata = (struct plist_data *) calloc(sizeof(struct plist_data), 1); dstdata->type = srcdata->type; dstdata->length = srcdata->length; switch (dstdata->type) { case PLIST_BOOLEAN: dstdata->boolval = srcdata->boolval; break; case PLIST_UINT: dstdata->intval = srcdata->intval; break; case PLIST_DATE: case PLIST_REAL: dstdata->realval = srcdata->realval; break; case PLIST_KEY: case PLIST_STRING: dstdata->strval = strdup(srcdata->strval); break; case PLIST_UNICODE: dstdata->unicodeval = wcsdup(srcdata->unicodeval); break; case PLIST_DATA: case PLIST_ARRAY: case PLIST_DICT: dstdata->buff = (char *) malloc(sizeof(char *) * srcdata->length); memcpy(dstdata->buff, srcdata->buff, sizeof(char *) * srcdata->length); break; default: break; } return dstdata; } void bin_to_plist(const char *plist_bin, uint32_t length, plist_t * plist) { //first check we have enough data if (!(length >= BPLIST_MAGIC_SIZE + BPLIST_VERSION_SIZE + BPLIST_TRL_SIZE)) return; //check that plist_bin in actually a plist if (memcmp(plist_bin, BPLIST_MAGIC, BPLIST_MAGIC_SIZE) != 0) return; //check for known version if (memcmp(plist_bin + BPLIST_MAGIC_SIZE, BPLIST_VERSION, BPLIST_VERSION_SIZE) != 0) return; //now parse trailer const char *trailer = plist_bin + (length - BPLIST_TRL_SIZE); uint8_t offset_size = trailer[BPLIST_TRL_OFFSIZE_IDX]; uint8_t dict_param_size = trailer[BPLIST_TRL_PARMSIZE_IDX]; uint64_t num_objects = be64dec(trailer + BPLIST_TRL_NUMOBJ_IDX); uint64_t root_object = be64dec(trailer + BPLIST_TRL_ROOTOBJ_IDX); uint64_t offset_table_index = be64dec(trailer + BPLIST_TRL_OFFTAB_IDX); log_debug_msg("Offset size: %i\n", offset_size); log_debug_msg("Ref size: %i\n", dict_param_size); log_debug_msg("Number of objects: %lli\n", num_objects); log_debug_msg("Root object index: %lli\n", root_object); log_debug_msg("Offset table index: %lli\n", offset_table_index); if (num_objects == 0) return; //allocate serialized array of nodes plist_t *nodeslist = NULL; nodeslist = (plist_t *) malloc(sizeof(plist_t) * num_objects); if (!nodeslist) return; //parse serialized nodes uint64_t i = 0; uint64_t current_offset = 0; const char *offset_table = plist_bin + offset_table_index; for (i = 0; i < num_objects; i++) { current_offset = swap_n_bytes(offset_table + i * offset_size, offset_size); log_debug_msg("parse_nodes: current_offset = %i\n", current_offset); char *obj = plist_bin + current_offset; nodeslist[i] = parse_bin_node(obj, dict_param_size, &obj); log_debug_msg("parse_nodes: parse_raw_node done\n"); } //setup children for structured types int j = 0, str_i = 0, str_j = 0; uint32_t index1 = 0, index2 = 0; for (i = 0; i < num_objects; i++) { log_debug_msg("parse_nodes: on node %i\n", i); struct plist_data *data = (struct plist_data *) nodeslist[i]->data; switch (data->type) { case PLIST_DICT: log_debug_msg("parse_nodes: dictionary found\n"); for (j = 0; j < data->length; j++) { str_i = j * dict_param_size; str_j = (j + data->length) * dict_param_size; index1 = swap_n_bytes(data->buff + str_i, dict_param_size); index2 = swap_n_bytes(data->buff + str_j, dict_param_size); //first one is actually a key ((struct plist_data *) nodeslist[index1]->data)->type = PLIST_KEY; if (G_NODE_IS_ROOT(nodeslist[index1])) g_node_append(nodeslist[i], nodeslist[index1]); else g_node_append(nodeslist[i], g_node_copy_deep(nodeslist[index1], copy_plist_data, NULL)); if (G_NODE_IS_ROOT(nodeslist[index2])) g_node_append(nodeslist[i], nodeslist[index2]); else g_node_append(nodeslist[i], g_node_copy_deep(nodeslist[index2], copy_plist_data, NULL)); } free(data->buff); break; case PLIST_ARRAY: log_debug_msg("parse_nodes: array found\n"); for (j = 0; j < data->length; j++) { str_j = j * dict_param_size; index1 = swap_n_bytes(data->buff + str_j, dict_param_size); //g_node_append(nodeslist[i], nodeslist[index1]); if (G_NODE_IS_ROOT(nodeslist[index1])) g_node_append(nodeslist[i], nodeslist[index1]); else g_node_append(nodeslist[i], g_node_copy_deep(nodeslist[index1], copy_plist_data, NULL)); } free(data->buff); break; default: break; } } *plist = nodeslist[root_object]; } GNode *find_query_node(plist_t plist, char *key, char *request) { if (!plist) return NULL; GNode *current = NULL; for (current = plist->children; current; current = current->next) { struct plist_data *data = (struct plist_data *) current->data; if (data->type == PLIST_KEY && !strcmp(data->strval, key) && current->next) { data = (struct plist_data *) current->next->data; if (data->type == PLIST_STRING && !strcmp(data->strval, request)) return current->next; } if (data->type == PLIST_DICT || data->type == PLIST_ARRAY) { GNode *sub = find_query_node(current, key, request); if (sub) return sub; } } return NULL; } char compare_node_value(plist_type type, struct plist_data *data, void *value) { char res = FALSE; switch (type) { case PLIST_BOOLEAN: res = data->boolval == *((char *) value) ? TRUE : FALSE; break; case PLIST_UINT: res = data->intval == *((uint64_t *) value) ? TRUE : FALSE; break; case PLIST_REAL: res = data->realval == *((double *) value) ? TRUE : FALSE; break; case PLIST_KEY: case PLIST_STRING: res = !strcmp(data->strval, ((char *) value)); break; case PLIST_UNICODE: res = !wcscmp(data->unicodeval, ((wchar_t *) value)); break; case PLIST_DATA: res = !strcmp(data->buff, ((char *) value)); break; case PLIST_ARRAY: case PLIST_DICT: case PLIST_DATE: default: break; } return res; } GNode *find_node(plist_t plist, plist_type type, void *value) { if (!plist) return NULL; GNode *current = NULL; for (current = plist->children; current; current = current->next) { struct plist_data *data = (struct plist_data *) current->data; if (data->type == type && compare_node_value(type, data, value)) { return current; } if (data->type == PLIST_DICT || data->type == PLIST_ARRAY) { GNode *sub = find_node(current, type, value); if (sub) return sub; } } return NULL; } void get_type_and_value(GNode * node, plist_type * type, void *value) { if (!node) return; struct plist_data *data = (struct plist_data *) node->data; *type = data->type; switch (*type) { case PLIST_BOOLEAN: *((char *) value) = data->boolval; break; case PLIST_UINT: *((uint64_t *) value) = data->intval; break; case PLIST_REAL: *((double *) value) = data->realval; break; case PLIST_STRING: *((char **) value) = strdup(data->strval); break; case PLIST_UNICODE: *((wchar_t **) value) = wcsdup(data->unicodeval); break; case PLIST_KEY: *((char **) value) = strdup(data->strval); break; case PLIST_DATA: case PLIST_ARRAY: case PLIST_DICT: case PLIST_DATE: default: break; } } guint plist_data_hash(gconstpointer key) { struct plist_data *data = (struct plist_data *) ((GNode *) key)->data; guint hash = data->type; guint i = 0; char *buff = NULL; guint size = 0; switch (data->type) { case PLIST_BOOLEAN: case PLIST_UINT: case PLIST_REAL: buff = (char *) &data->intval; size = 8; break; case PLIST_KEY: case PLIST_STRING: buff = data->strval; size = strlen(buff); break; case PLIST_UNICODE: buff = data->unicodeval; size = strlen(buff) * sizeof(wchar_t); break; case PLIST_DATA: case PLIST_ARRAY: case PLIST_DICT: //for these types only hash pointer buff = &key; size = sizeof(gconstpointer); break; case PLIST_DATE: default: break; } //now perform hash for (i = 0; i < size; buff++, i++) hash = hash << 7 ^ (*buff); return hash; } gboolean plist_data_compare(gconstpointer a, gconstpointer b) { if (!a || !b) return FALSE; if (!((GNode *) a)->data || !((GNode *) b)->data) return FALSE; struct plist_data *val_a = (struct plist_data *) ((GNode *) a)->data; struct plist_data *val_b = (struct plist_data *) ((GNode *) b)->data; if (val_a->type != val_b->type) return FALSE; switch (val_a->type) { case PLIST_BOOLEAN: case PLIST_UINT: case PLIST_REAL: if (val_a->intval == val_b->intval) //it is an union so this is sufficient return TRUE; else return FALSE; case PLIST_KEY: case PLIST_STRING: if (!strcmp(val_a->strval, val_b->strval)) return TRUE; else return FALSE; case PLIST_UNICODE: if (!strcmp(val_a->unicodeval, val_b->unicodeval)) return TRUE; else return FALSE; case PLIST_DATA: case PLIST_ARRAY: case PLIST_DICT: //compare pointer if (a == b) return TRUE; else return FALSE; break; case PLIST_DATE: default: break; } return FALSE; } struct serialize_s { GPtrArray *objects; GHashTable *ref_table; }; void serialize_plist(GNode * node, gpointer data) { struct serialize_s *ser = (struct serialize_s *) data; uint64_t current_index = ser->objects->len; //first check that node is not yet in objects gpointer val = g_hash_table_lookup(ser->ref_table, node); if (val) { //data is already in table return; } //insert new ref g_hash_table_insert(ser->ref_table, node, GUINT_TO_POINTER(current_index)); //now append current node to object array g_ptr_array_add(ser->objects, node); //now recurse on children g_node_children_foreach(node, G_TRAVERSE_ALL, serialize_plist, data); return; } void write_int(GByteArray * bplist, uint64_t val) { uint64_t size = get_needed_bytes(val); uint8_t *buff = (uint8_t *) malloc(sizeof(uint8_t) + size); buff[0] = BPLIST_UINT | size >> 1; memcpy(buff + 1, &val, size); swap_n_bytes(buff + 1, size); g_byte_array_append(bplist, buff, sizeof(uint8_t) + size); free(buff); } void write_real(GByteArray * bplist, double val) { uint64_t size = get_real_bytes(*((uint64_t *) & val)); //cheat to know used space uint8_t *buff = (uint8_t *) malloc(sizeof(uint8_t) + size); buff[0] = BPLIST_REAL | size >> 1; memcpy(buff + 1, &val, size); swap_n_bytes(buff + 1, size); g_byte_array_append(bplist, buff, sizeof(uint8_t) + size); free(buff); } void write_raw_data(GByteArray * bplist, uint8_t mark, uint8_t * val, uint64_t size) { uint8_t marker = mark | (size < 15 ? size : 0xf); g_byte_array_append(bplist, &marker, sizeof(uint8_t)); if (size >= 15) { GByteArray *int_buff = g_byte_array_new(); write_int(int_buff, size); g_byte_array_append(bplist, int_buff->data, int_buff->len); g_byte_array_free(int_buff, TRUE); } uint8_t *buff = (uint8_t *) malloc(size); memcpy(buff, val, size); g_byte_array_append(bplist, buff, size); free(buff); } void write_data(GByteArray * bplist, uint8_t * val, uint64_t size) { write_raw_data(bplist, BPLIST_DATA, val, size); } void write_string(GByteArray * bplist, char *val) { uint64_t size = strlen(val); write_raw_data(bplist, BPLIST_STRING, val, size); } void write_array(GByteArray * bplist, GNode * node, GHashTable * ref_table, uint8_t dict_param_size) { uint64_t size = g_node_n_children(node); uint8_t marker = BPLIST_ARRAY | (size < 15 ? size : 0xf); g_byte_array_append(bplist, &marker, sizeof(uint8_t)); if (size >= 15) { GByteArray *int_buff = g_byte_array_new(); write_int(int_buff, size); g_byte_array_append(bplist, int_buff->data, int_buff->len); g_byte_array_free(int_buff, TRUE); } uint64_t idx = 0; uint8_t *buff = (uint8_t *) malloc(size * dict_param_size); GNode *cur = NULL; int i = 0; for (i = 0, cur = node->children; cur && i < size; cur = cur->next, i++) { idx = GPOINTER_TO_UINT(g_hash_table_lookup(ref_table, cur)); memcpy(buff + i * dict_param_size, &idx, dict_param_size); swap_n_bytes(buff + i * dict_param_size, dict_param_size); } //now append to bplist g_byte_array_append(bplist, buff, size * dict_param_size); free(buff); } void write_dict(GByteArray * bplist, GNode * node, GHashTable * ref_table, uint8_t dict_param_size) { uint64_t size = g_node_n_children(node) / 2; uint8_t marker = BPLIST_ARRAY | (size < 15 ? size : 0xf); g_byte_array_append(bplist, &marker, sizeof(uint8_t)); if (size >= 15) { GByteArray *int_buff = g_byte_array_new(); write_int(int_buff, size); g_byte_array_append(bplist, int_buff->data, int_buff->len); g_byte_array_free(int_buff, TRUE); } uint64_t idx1 = 0; uint64_t idx2 = 0; uint8_t *buff = (uint8_t *) malloc(size * 2 * dict_param_size); GNode *cur = NULL; int i = 0; for (i = 0, cur = node->children; cur && i < size; cur = cur->next->next, i++) { idx1 = GPOINTER_TO_UINT(g_hash_table_lookup(ref_table, cur)); memcpy(buff + i * dict_param_size, &idx1, dict_param_size); swap_n_bytes(buff + i * dict_param_size, dict_param_size); idx2 = GPOINTER_TO_UINT(g_hash_table_lookup(ref_table, cur->next)); memcpy(buff + (i + size) * dict_param_size, &idx2, dict_param_size); swap_n_bytes(buff + (i + size) * dict_param_size, dict_param_size); } //now append to bplist g_byte_array_append(bplist, buff, size * dict_param_size); free(buff); } void plist_to_bin(plist_t plist, char **plist_bin, uint32_t * length) { //first serialize tree //list of objects GPtrArray *objects = g_ptr_array_new(); //hashtable to write only once same nodes GHashTable *ref_table = g_hash_table_new(plist_data_hash, plist_data_compare); //serialize plist struct serialize_s ser_s = { objects, ref_table }; g_node_children_foreach(plist, G_TRAVERSE_ALL, serialize_plist, &ser_s); //now stream to output buffer uint8_t offset_size = 0; //unknown yet uint8_t dict_param_size = get_needed_bytes(objects->len); uint64_t num_objects = objects->len; uint64_t root_object = 0; //root is first in list uint64_t offset_table_index = 0; //unknown yet //setup a dynamic bytes array to store bplist in GByteArray *bplist_buff = g_byte_array_new(); //set magic number and version g_byte_array_append(bplist_buff, BPLIST_MAGIC, BPLIST_MAGIC_SIZE); g_byte_array_append(bplist_buff, BPLIST_VERSION, BPLIST_VERSION_SIZE); //write objects and table int i = 0; uint8_t *buff = NULL; uint8_t size = 0; uint64_t offsets[num_objects]; for (i = 0; i < num_objects; i++) { offsets[i] = bplist_buff->len; struct plist_data *data = (struct plist_data *) ((GNode *) g_ptr_array_index(objects, i))->data; switch (data->type) { case PLIST_BOOLEAN: buff = (uint8_t *) malloc(sizeof(uint8_t)); buff[0] = data->boolval ? BPLIST_TRUE : BPLIST_FALSE; g_byte_array_append(bplist_buff, buff, sizeof(uint8_t)); free(buff); break; case PLIST_UINT: write_int(bplist_buff, data->intval); break; case PLIST_REAL: write_real(bplist_buff, data->realval); break; case PLIST_KEY: case PLIST_STRING: write_string(bplist_buff, data->strval); break; case PLIST_UNICODE: //TODO break; case PLIST_DATA: write_data(bplist_buff, data->strval, data->length); case PLIST_ARRAY: write_array(bplist_buff, g_ptr_array_index(objects, i), ref_table, dict_param_size); break; case PLIST_DICT: write_dict(bplist_buff, g_ptr_array_index(objects, i), ref_table, dict_param_size); break; case PLIST_DATE: //TODO break; default: break; } } //write offsets offset_size = get_needed_bytes(bplist_buff->len); for (i = 0; i <= num_objects; i++) { uint8_t *buff = (uint8_t *) malloc(offset_size); memcpy(buff, offsets + i, offset_size); swap_n_bytes(buff, offset_size); g_byte_array_append(bplist_buff, buff, offset_size); free(buff); } //setup trailer num_objects = bswap_64(num_objects); root_object = bswap_64(root_object); offset_table_index = bswap_64(offset_table_index); char trailer[BPLIST_TRL_SIZE]; memcpy(trailer + BPLIST_TRL_OFFSIZE_IDX, &offset_size, sizeof(uint8_t)); memcpy(trailer + BPLIST_TRL_PARMSIZE_IDX, &dict_param_size, sizeof(uint8_t)); memcpy(trailer + BPLIST_TRL_NUMOBJ_IDX, &num_objects, sizeof(uint64_t)); memcpy(trailer + BPLIST_TRL_ROOTOBJ_IDX, &root_object, sizeof(uint64_t)); memcpy(trailer + BPLIST_TRL_OFFTAB_IDX, &offset_table_index, sizeof(uint64_t)); g_byte_array_append(bplist_buff, trailer, BPLIST_TRL_SIZE); //duplicate buffer *plist_bin = (char *) malloc(bplist_buff->len); memcpy(*plist_bin, bplist_buff->data, bplist_buff->len); *length = bplist_buff->len; g_byte_array_free(bplist_buff, TRUE); }