From 8d34de3078469aba636846a15bad08198f66fdc8 Mon Sep 17 00:00:00 2001 From: Nikias Bassen Date: Mon, 19 Sep 2016 03:10:04 +0200 Subject: Use time64 implementation by Michael G Schwern to extend allowed date/time range The main benefit of this is to allow date/time values outside of the 32bit time_t range which is very important on 32bit platforms. But there are also some other issues that will be fixed with this, for example on macOS, mktime() will not work for dates < 1902 despite time_t being 64bit. In the same run this commit will also use a reentrant version of gmtime64_r that should help in multithreaded scenarios. Original code taken from: https://github.com/evalEmpire/y2038 --- configure.ac | 28 +- src/Makefile.am | 1 + src/time64.c | 836 ++++++++++++++++++++++++++++++++++++++++++++++++++++ src/time64.h | 85 ++++++ src/time64_limits.h | 95 ++++++ src/xplist.c | 28 +- 6 files changed, 1061 insertions(+), 12 deletions(-) create mode 100644 src/time64.c create mode 100644 src/time64.h create mode 100644 src/time64_limits.h diff --git a/configure.ac b/configure.ac index 8394997..5f99d95 100644 --- a/configure.ac +++ b/configure.ac @@ -56,7 +56,7 @@ AC_TYPE_UINT32_T AC_TYPE_UINT8_T # Checks for library functions. -AC_CHECK_FUNCS([asprintf strcasecmp strdup strerror strndup stpcpy vasprintf]) +AC_CHECK_FUNCS([asprintf strcasecmp strdup strerror strndup stpcpy vasprintf gmtime_r localtime_r timegm]) # Checking endianness AC_C_BIGENDIAN([AC_DEFINE([__BIG_ENDIAN__], [1], [big endian])], @@ -78,6 +78,32 @@ case ${host_os} in esac AM_CONDITIONAL(WIN32, test x$win32 = xtrue) +# Check if struct tm has a tm_gmtoff member +AC_CACHE_CHECK(for tm_gmtoff in struct tm, ac_cv_struct_tm_gmtoff, + AC_TRY_COMPILE([ + #include + ], [ + struct tm tm; + tm.tm_gmtoff = 1; + ], ac_cv_struct_tm_gmtoff=yes, ac_cv_struct_tm_gmtoff=no)) + +if (test "$ac_cv_struct_tm_gmtoff" = "yes"); then + AC_DEFINE(HAVE_TM_TM_GMTOFF, 1, [Define if struct tm has a tm_gmtoff member]) +fi + +# Check if struct tm has a tm_zone member +AC_CACHE_CHECK(for tm_zone in struct tm, ac_cv_struct_tm_zone, + AC_TRY_COMPILE([ + #include + ], [ + struct tm tm; + tm.tm_zone = 1; + ], ac_cv_struct_tm_zone=yes, ac_cv_struct_tm_zone=no)) + +if (test "$ac_cv_struct_tm_zone" = "yes"); then + AC_DEFINE(HAVE_TM_TM_ZONE, 1, [Define if struct tm has a tm_zone member]) +fi + # Cython Python Bindings AC_ARG_WITH([cython], [AS_HELP_STRING([--without-cython], diff --git a/src/Makefile.am b/src/Makefile.am index 83b975c..b9117f3 100644 --- a/src/Makefile.am +++ b/src/Makefile.am @@ -10,6 +10,7 @@ libplist_la_SOURCES = base64.c base64.h \ bytearray.c bytearray.h \ hashtable.c hashtable.h \ ptrarray.c ptrarray.h \ + time64.c time64.h time64_limits.h \ xplist.c \ bplist.c \ plist.c plist.h diff --git a/src/time64.c b/src/time64.c new file mode 100644 index 0000000..8f82e39 --- /dev/null +++ b/src/time64.c @@ -0,0 +1,836 @@ +/* + +Copyright (c) 2007-2010 Michael G Schwern + +This software originally derived from Paul Sheer's pivotal_gmtime_r.c. + +The MIT License: + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +THE SOFTWARE. + +*/ + +/* + +Programmers who have available to them 64-bit time values as a 'long +long' type can use localtime64_r() and gmtime64_r() which correctly +converts the time even on 32-bit systems. Whether you have 64-bit time +values will depend on the operating system. + +localtime64_r() is a 64-bit equivalent of localtime_r(). + +gmtime64_r() is a 64-bit equivalent of gmtime_r(). + +*/ + +#include +#include +#include +#include +#include +#include +#include "time64.h" +#include "time64_limits.h" + + +/* Spec says except for stftime() and the _r() functions, these + all return static memory. Stabbings! */ +static struct TM Static_Return_Date; +static char Static_Return_String[35]; + +static const char days_in_month[2][12] = { + {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, + {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, +}; + +static const short julian_days_by_month[2][12] = { + {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}, + {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335}, +}; + +static char wday_name[7][4] = { + "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" +}; + +static char mon_name[12][4] = { + "Jan", "Feb", "Mar", "Apr", "May", "Jun", + "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" +}; + +static const short length_of_year[2] = { 365, 366 }; + +/* Some numbers relating to the gregorian cycle */ +static const Year years_in_gregorian_cycle = 400; +#define days_in_gregorian_cycle ((365 * 400) + 100 - 4 + 1) +static const Time64_T seconds_in_gregorian_cycle = days_in_gregorian_cycle * 60LL * 60LL * 24LL; + +/* Year range we can trust the time funcitons with */ +#define MAX_SAFE_YEAR 2037 +#define MIN_SAFE_YEAR 1971 + +/* 28 year Julian calendar cycle */ +#define SOLAR_CYCLE_LENGTH 28 + +/* Year cycle from MAX_SAFE_YEAR down. */ +static const short safe_years_high[SOLAR_CYCLE_LENGTH] = { + 2016, 2017, 2018, 2019, + 2020, 2021, 2022, 2023, + 2024, 2025, 2026, 2027, + 2028, 2029, 2030, 2031, + 2032, 2033, 2034, 2035, + 2036, 2037, 2010, 2011, + 2012, 2013, 2014, 2015 +}; + +/* Year cycle from MIN_SAFE_YEAR up */ +static const int safe_years_low[SOLAR_CYCLE_LENGTH] = { + 1996, 1997, 1998, 1971, + 1972, 1973, 1974, 1975, + 1976, 1977, 1978, 1979, + 1980, 1981, 1982, 1983, + 1984, 1985, 1986, 1987, + 1988, 1989, 1990, 1991, + 1992, 1993, 1994, 1995, +}; + +/* This isn't used, but it's handy to look at */ +#if 0 +static const char dow_year_start[SOLAR_CYCLE_LENGTH] = { + 5, 0, 1, 2, /* 0 2016 - 2019 */ + 3, 5, 6, 0, /* 4 */ + 1, 3, 4, 5, /* 8 1996 - 1998, 1971*/ + 6, 1, 2, 3, /* 12 1972 - 1975 */ + 4, 6, 0, 1, /* 16 */ + 2, 4, 5, 6, /* 20 2036, 2037, 2010, 2011 */ + 0, 2, 3, 4 /* 24 2012, 2013, 2014, 2015 */ +}; +#endif + +/* Let's assume people are going to be looking for dates in the future. + Let's provide some cheats so you can skip ahead. + This has a 4x speed boost when near 2008. +*/ +/* Number of days since epoch on Jan 1st, 2008 GMT */ +#define CHEAT_DAYS (1199145600 / 24 / 60 / 60) +#define CHEAT_YEARS 108 + +#define IS_LEAP(n) ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0) +#define WRAP(a,b,m) ((a) = ((a) < 0 ) ? ((b)--, (a) + (m)) : (a)) + +#ifdef USE_SYSTEM_LOCALTIME +# define SHOULD_USE_SYSTEM_LOCALTIME(a) ( \ + (a) <= SYSTEM_LOCALTIME_MAX && \ + (a) >= SYSTEM_LOCALTIME_MIN \ +) +#else +# define SHOULD_USE_SYSTEM_LOCALTIME(a) (0) +#endif + +#ifdef USE_SYSTEM_GMTIME +# define SHOULD_USE_SYSTEM_GMTIME(a) ( \ + (a) <= SYSTEM_GMTIME_MAX && \ + (a) >= SYSTEM_GMTIME_MIN \ +) +#else +# define SHOULD_USE_SYSTEM_GMTIME(a) (0) +#endif + +/* Multi varadic macros are a C99 thing, alas */ +#ifdef TIME_64_DEBUG +# define TIME64_TRACE(format) (fprintf(stderr, format)) +# define TIME64_TRACE1(format, var1) (fprintf(stderr, format, var1)) +# define TIME64_TRACE2(format, var1, var2) (fprintf(stderr, format, var1, var2)) +# define TIME64_TRACE3(format, var1, var2, var3) (fprintf(stderr, format, var1, var2, var3)) +#else +# define TIME64_TRACE(format) ((void)0) +# define TIME64_TRACE1(format, var1) ((void)0) +# define TIME64_TRACE2(format, var1, var2) ((void)0) +# define TIME64_TRACE3(format, var1, var2, var3) ((void)0) +#endif + + +static int is_exception_century(Year year) +{ + int is_exception = ((year % 100 == 0) && !(year % 400 == 0)); + TIME64_TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no"); + + return(is_exception); +} + + +/* Compare two dates. + The result is like cmp. + Ignores things like gmtoffset and dst +*/ +static int cmp_date( const struct TM* left, const struct tm* right ) { + if( left->tm_year > right->tm_year ) + return 1; + else if( left->tm_year < right->tm_year ) + return -1; + + if( left->tm_mon > right->tm_mon ) + return 1; + else if( left->tm_mon < right->tm_mon ) + return -1; + + if( left->tm_mday > right->tm_mday ) + return 1; + else if( left->tm_mday < right->tm_mday ) + return -1; + + if( left->tm_hour > right->tm_hour ) + return 1; + else if( left->tm_hour < right->tm_hour ) + return -1; + + if( left->tm_min > right->tm_min ) + return 1; + else if( left->tm_min < right->tm_min ) + return -1; + + if( left->tm_sec > right->tm_sec ) + return 1; + else if( left->tm_sec < right->tm_sec ) + return -1; + + return 0; +} + + +/* Check if a date is safely inside a range. + The intention is to check if its a few days inside. +*/ +static int date_in_safe_range( const struct TM* date, const struct tm* min, const struct tm* max ) { + if( cmp_date(date, min) == -1 ) + return 0; + + if( cmp_date(date, max) == 1 ) + return 0; + + return 1; +} + + +/* timegm() is not in the C or POSIX spec, but it is such a useful + extension I would be remiss in leaving it out. Also I need it + for localtime64() +*/ +Time64_T timegm64(const struct TM *date) { + Time64_T days = 0; + Time64_T seconds = 0; + Year year; + Year orig_year = (Year)date->tm_year; + int cycles = 0; + + if( orig_year > 100 ) { + cycles = (orig_year - 100) / 400; + orig_year -= cycles * 400; + days += (Time64_T)cycles * days_in_gregorian_cycle; + } + else if( orig_year < -300 ) { + cycles = (orig_year - 100) / 400; + orig_year -= cycles * 400; + days += (Time64_T)cycles * days_in_gregorian_cycle; + } + TIME64_TRACE3("# timegm/ cycles: %d, days: %lld, orig_year: %lld\n", cycles, days, orig_year); + + if( orig_year > 70 ) { + year = 70; + while( year < orig_year ) { + days += length_of_year[IS_LEAP(year)]; + year++; + } + } + else if ( orig_year < 70 ) { + year = 69; + do { + days -= length_of_year[IS_LEAP(year)]; + year--; + } while( year >= orig_year ); + } + + days += julian_days_by_month[IS_LEAP(orig_year)][date->tm_mon]; + days += date->tm_mday - 1; + + seconds = days * 60 * 60 * 24; + + seconds += date->tm_hour * 60 * 60; + seconds += date->tm_min * 60; + seconds += date->tm_sec; + + return(seconds); +} + + +static int check_tm(struct TM *tm) +{ + /* Don't forget leap seconds */ + assert(tm->tm_sec >= 0); + assert(tm->tm_sec <= 61); + + assert(tm->tm_min >= 0); + assert(tm->tm_min <= 59); + + assert(tm->tm_hour >= 0); + assert(tm->tm_hour <= 23); + + assert(tm->tm_mday >= 1); + assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]); + + assert(tm->tm_mon >= 0); + assert(tm->tm_mon <= 11); + + assert(tm->tm_wday >= 0); + assert(tm->tm_wday <= 6); + + assert(tm->tm_yday >= 0); + assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]); + +#ifdef HAVE_TM_TM_GMTOFF + assert(tm->tm_gmtoff >= -24 * 60 * 60); + assert(tm->tm_gmtoff <= 24 * 60 * 60); +#endif + + return 1; +} + + +/* The exceptional centuries without leap years cause the cycle to + shift by 16 +*/ +static Year cycle_offset(Year year) +{ + const Year start_year = 2000; + Year year_diff = year - start_year; + Year exceptions; + + if( year > start_year ) + year_diff--; + + exceptions = year_diff / 100; + exceptions -= year_diff / 400; + + TIME64_TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n", + year, exceptions, year_diff); + + return exceptions * 16; +} + +/* For a given year after 2038, pick the latest possible matching + year in the 28 year calendar cycle. + + A matching year... + 1) Starts on the same day of the week. + 2) Has the same leap year status. + + This is so the calendars match up. + + Also the previous year must match. When doing Jan 1st you might + wind up on Dec 31st the previous year when doing a -UTC time zone. + + Finally, the next year must have the same start day of week. This + is for Dec 31st with a +UTC time zone. + It doesn't need the same leap year status since we only care about + January 1st. +*/ +static int safe_year(const Year year) +{ + int safe_year; + Year year_cycle; + + if( year >= MIN_SAFE_YEAR && year <= MAX_SAFE_YEAR ) { + return (int)year; + } + + year_cycle = year + cycle_offset(year); + + /* safe_years_low is off from safe_years_high by 8 years */ + if( year < MIN_SAFE_YEAR ) + year_cycle -= 8; + + /* Change non-leap xx00 years to an equivalent */ + if( is_exception_century(year) ) + year_cycle += 11; + + /* Also xx01 years, since the previous year will be wrong */ + if( is_exception_century(year - 1) ) + year_cycle += 17; + + year_cycle %= SOLAR_CYCLE_LENGTH; + if( year_cycle < 0 ) + year_cycle = SOLAR_CYCLE_LENGTH + year_cycle; + + assert( year_cycle >= 0 ); + assert( year_cycle < SOLAR_CYCLE_LENGTH ); + if( year < MIN_SAFE_YEAR ) + safe_year = safe_years_low[year_cycle]; + else if( year > MAX_SAFE_YEAR ) + safe_year = safe_years_high[year_cycle]; + else + assert(0); + + TIME64_TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n", + year, year_cycle, safe_year); + + assert(safe_year <= MAX_SAFE_YEAR && safe_year >= MIN_SAFE_YEAR); + + return safe_year; +} + + +void copy_tm_to_TM64(const struct tm *src, struct TM *dest) { + if( src == NULL ) { + memset(dest, 0, sizeof(*dest)); + } + else { +# ifdef USE_TM64 + dest->tm_sec = src->tm_sec; + dest->tm_min = src->tm_min; + dest->tm_hour = src->tm_hour; + dest->tm_mday = src->tm_mday; + dest->tm_mon = src->tm_mon; + dest->tm_year = (Year)src->tm_year; + dest->tm_wday = src->tm_wday; + dest->tm_yday = src->tm_yday; + dest->tm_isdst = src->tm_isdst; + +# ifdef HAVE_TM_TM_GMTOFF + dest->tm_gmtoff = src->tm_gmtoff; +# endif + +# ifdef HAVE_TM_TM_ZONE + dest->tm_zone = src->tm_zone; +# endif + +# else + /* They're the same type */ + memcpy(dest, src, sizeof(*dest)); +# endif + } +} + + +void copy_TM64_to_tm(const struct TM *src, struct tm *dest) { + if( src == NULL ) { + memset(dest, 0, sizeof(*dest)); + } + else { +# ifdef USE_TM64 + dest->tm_sec = src->tm_sec; + dest->tm_min = src->tm_min; + dest->tm_hour = src->tm_hour; + dest->tm_mday = src->tm_mday; + dest->tm_mon = src->tm_mon; + dest->tm_year = (int)src->tm_year; + dest->tm_wday = src->tm_wday; + dest->tm_yday = src->tm_yday; + dest->tm_isdst = src->tm_isdst; + +# ifdef HAVE_TM_TM_GMTOFF + dest->tm_gmtoff = src->tm_gmtoff; +# endif + +# ifdef HAVE_TM_TM_ZONE + dest->tm_zone = src->tm_zone; +# endif + +# else + /* They're the same type */ + memcpy(dest, src, sizeof(*dest)); +# endif + } +} + + +#ifndef HAVE_LOCALTIME_R +/* Simulate localtime_r() to the best of our ability */ +static struct tm * fake_localtime_r(const time_t *time, struct tm *result) { + const struct tm *static_result = localtime(time); + + assert(result != NULL); + + if( static_result == NULL ) { + memset(result, 0, sizeof(*result)); + return NULL; + } + else { + memcpy(result, static_result, sizeof(*result)); + return result; + } +} +#endif + + +#ifndef HAVE_GMTIME_R +/* Simulate gmtime_r() to the best of our ability */ +static struct tm * fake_gmtime_r(const time_t *time, struct tm *result) { + const struct tm *static_result = gmtime(time); + + assert(result != NULL); + + if( static_result == NULL ) { + memset(result, 0, sizeof(*result)); + return NULL; + } + else { + memcpy(result, static_result, sizeof(*result)); + return result; + } +} +#endif + + +static Time64_T seconds_between_years(Year left_year, Year right_year) { + int increment = (left_year > right_year) ? 1 : -1; + Time64_T seconds = 0; + int cycles; + + if( left_year > 2400 ) { + cycles = (left_year - 2400) / 400; + left_year -= cycles * 400; + seconds += cycles * seconds_in_gregorian_cycle; + } + else if( left_year < 1600 ) { + cycles = (left_year - 1600) / 400; + left_year += cycles * 400; + seconds += cycles * seconds_in_gregorian_cycle; + } + + while( left_year != right_year ) { + seconds += length_of_year[IS_LEAP(right_year - 1900)] * 60 * 60 * 24; + right_year += increment; + } + + return seconds * increment; +} + + +Time64_T mktime64(struct TM *input_date) { + struct tm safe_date; + struct TM date; + Time64_T time; + Year year = input_date->tm_year + 1900; + + if( date_in_safe_range(input_date, &SYSTEM_MKTIME_MIN, &SYSTEM_MKTIME_MAX) ) + { + copy_TM64_to_tm(input_date, &safe_date); + time = (Time64_T)mktime(&safe_date); + + /* Correct the possibly out of bound input date */ + copy_tm_to_TM64(&safe_date, input_date); + return time; + } + + /* Have to make the year safe in date else it won't fit in safe_date */ + date = *input_date; + date.tm_year = safe_year(year) - 1900; + copy_TM64_to_tm(&date, &safe_date); + + time = (Time64_T)mktime(&safe_date); + + /* Correct the user's possibly out of bound input date */ + copy_tm_to_TM64(&safe_date, input_date); + + time += seconds_between_years(year, (Year)(safe_date.tm_year + 1900)); + + return time; +} + + +/* Because I think mktime() is a crappy name */ +Time64_T timelocal64(struct TM *date) { + return mktime64(date); +} + + +struct TM *gmtime64_r (const Time64_T *in_time, struct TM *p) +{ + int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday; + Time64_T v_tm_tday; + int leap; + Time64_T m; + Time64_T time = *in_time; + Year year = 70; + int cycles = 0; + + assert(p != NULL); + + /* Use the system gmtime() if time_t is small enough */ + if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) { + time_t safe_time = (time_t)*in_time; + struct tm safe_date; + GMTIME_R(&safe_time, &safe_date); + + copy_tm_to_TM64(&safe_date, p); + assert(check_tm(p)); + + return p; + } + +#ifdef HAVE_TM_TM_GMTOFF + p->tm_gmtoff = 0; +#endif + p->tm_isdst = 0; + +#ifdef HAVE_TM_TM_ZONE + p->tm_zone = (char*)"UTC"; +#endif + + v_tm_sec = (int)(time % 60); + time /= 60; + v_tm_min = (int)(time % 60); + time /= 60; + v_tm_hour = (int)(time % 24); + time /= 24; + v_tm_tday = time; + + WRAP (v_tm_sec, v_tm_min, 60); + WRAP (v_tm_min, v_tm_hour, 60); + WRAP (v_tm_hour, v_tm_tday, 24); + + v_tm_wday = (int)((v_tm_tday + 4) % 7); + if (v_tm_wday < 0) + v_tm_wday += 7; + m = v_tm_tday; + + if (m >= CHEAT_DAYS) { + year = CHEAT_YEARS; + m -= CHEAT_DAYS; + } + + if (m >= 0) { + /* Gregorian cycles, this is huge optimization for distant times */ + cycles = (int)(m / (Time64_T) days_in_gregorian_cycle); + if( cycles ) { + m -= (cycles * (Time64_T) days_in_gregorian_cycle); + year += (cycles * years_in_gregorian_cycle); + } + + /* Years */ + leap = IS_LEAP (year); + while (m >= (Time64_T) length_of_year[leap]) { + m -= (Time64_T) length_of_year[leap]; + year++; + leap = IS_LEAP (year); + } + + /* Months */ + v_tm_mon = 0; + while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) { + m -= (Time64_T) days_in_month[leap][v_tm_mon]; + v_tm_mon++; + } + } else { + year--; + + /* Gregorian cycles */ + cycles = (int)((m / (Time64_T) days_in_gregorian_cycle) + 1); + if( cycles ) { + m -= (cycles * (Time64_T) days_in_gregorian_cycle); + year += (cycles * years_in_gregorian_cycle); + } + + /* Years */ + leap = IS_LEAP (year); + while (m < (Time64_T) -length_of_year[leap]) { + m += (Time64_T) length_of_year[leap]; + year--; + leap = IS_LEAP (year); + } + + /* Months */ + v_tm_mon = 11; + while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) { + m += (Time64_T) days_in_month[leap][v_tm_mon]; + v_tm_mon--; + } + m += (Time64_T) days_in_month[leap][v_tm_mon]; + } + + p->tm_year = year; + if( p->tm_year != year ) { +#ifdef EOVERFLOW + errno = EOVERFLOW; +#endif + return NULL; + } + + /* At this point m is less than a year so casting to an int is safe */ + p->tm_mday = (int) m + 1; + p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m; + p->tm_sec = v_tm_sec; + p->tm_min = v_tm_min; + p->tm_hour = v_tm_hour; + p->tm_mon = v_tm_mon; + p->tm_wday = v_tm_wday; + + assert(check_tm(p)); + + return p; +} + + +struct TM *localtime64_r (const Time64_T *time, struct TM *local_tm) +{ + time_t safe_time; + struct tm safe_date; + struct TM gm_tm; + Year orig_year; + int month_diff; + + assert(local_tm != NULL); + + /* Use the system localtime() if time_t is small enough */ + if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) { + safe_time = (time_t)*time; + + TIME64_TRACE1("Using system localtime for %lld\n", *time); + + LOCALTIME_R(&safe_time, &safe_date); + + copy_tm_to_TM64(&safe_date, local_tm); + assert(check_tm(local_tm)); + + return local_tm; + } + + if( gmtime64_r(time, &gm_tm) == NULL ) { + TIME64_TRACE1("gmtime64_r returned null for %lld\n", *time); + return NULL; + } + + orig_year = gm_tm.tm_year; + + if (gm_tm.tm_year > (2037 - 1900) || + gm_tm.tm_year < (1970 - 1900) + ) + { + TIME64_TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year); + gm_tm.tm_year = safe_year((Year)(gm_tm.tm_year + 1900)) - 1900; + } + + safe_time = (time_t)timegm64(&gm_tm); + if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) { + TIME64_TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time); + return NULL; + } + + copy_tm_to_TM64(&safe_date, local_tm); + + local_tm->tm_year = orig_year; + if( local_tm->tm_year != orig_year ) { + TIME64_TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n", + (Year)local_tm->tm_year, (Year)orig_year); + +#ifdef EOVERFLOW + errno = EOVERFLOW; +#endif + return NULL; + } + + + month_diff = local_tm->tm_mon - gm_tm.tm_mon; + + /* When localtime is Dec 31st previous year and + gmtime is Jan 1st next year. + */ + if( month_diff == 11 ) { + local_tm->tm_year--; + } + + /* When localtime is Jan 1st, next year and + gmtime is Dec 31st, previous year. + */ + if( month_diff == -11 ) { + local_tm->tm_year++; + } + + /* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st + in a non-leap xx00. There is one point in the cycle + we can't account for which the safe xx00 year is a leap + year. So we need to correct for Dec 31st comming out as + the 366th day of the year. + */ + if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 ) + local_tm->tm_yday--; + + assert(check_tm(local_tm)); + + return local_tm; +} + + +static int valid_tm_wday( const struct TM* date ) { + if( 0 <= date->tm_wday && date->tm_wday <= 6 ) + return 1; + else + return 0; +} + +static int valid_tm_mon( const struct TM* date ) { + if( 0 <= date->tm_mon && date->tm_mon <= 11 ) + return 1; + else + return 0; +} + + +char *asctime64_r( const struct TM* date, char *result ) { + /* I figure everything else can be displayed, even hour 25, but if + these are out of range we walk off the name arrays */ + if( !valid_tm_wday(date) || !valid_tm_mon(date) ) + return NULL; + + sprintf(result, TM64_ASCTIME_FORMAT, + wday_name[date->tm_wday], + mon_name[date->tm_mon], + date->tm_mday, date->tm_hour, + date->tm_min, date->tm_sec, + 1900 + date->tm_year); + + return result; +} + + +char *ctime64_r( const Time64_T* time, char* result ) { + struct TM date; + + localtime64_r( time, &date ); + return asctime64_r( &date, result ); +} + + +/* Non-thread safe versions of the above */ +struct TM *localtime64(const Time64_T *time) { + tzset(); + return localtime64_r(time, &Static_Return_Date); +} + +struct TM *gmtime64(const Time64_T *time) { + return gmtime64_r(time, &Static_Return_Date); +} + +char *asctime64( const struct TM* date ) { + return asctime64_r( date, Static_Return_String ); +} + +char *ctime64( const Time64_T* time ) { + tzset(); + return asctime64(localtime64(time)); +} diff --git a/src/time64.h b/src/time64.h new file mode 100644 index 0000000..556e06f --- /dev/null +++ b/src/time64.h @@ -0,0 +1,85 @@ +#ifndef TIME64_H +# define TIME64_H + +#include +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +/* Set our custom types */ +typedef long long Int64; +typedef Int64 Time64_T; +typedef Int64 Year; + + +/* A copy of the tm struct but with a 64 bit year */ +struct TM64 { + int tm_sec; + int tm_min; + int tm_hour; + int tm_mday; + int tm_mon; + Year tm_year; + int tm_wday; + int tm_yday; + int tm_isdst; + +#ifdef HAVE_TM_TM_GMTOFF + long tm_gmtoff; +#endif + +#ifdef HAVE_TM_TM_ZONE + char *tm_zone; +#endif +}; + + +/* Decide which tm struct to use */ +#ifdef USE_TM64 +#define TM TM64 +#else +#define TM tm +#endif + + +/* Declare public functions */ +struct TM *gmtime64_r (const Time64_T *, struct TM *); +struct TM *localtime64_r (const Time64_T *, struct TM *); +struct TM *gmtime64 (const Time64_T *); +struct TM *localtime64 (const Time64_T *); + +char *asctime64 (const struct TM *); +char *asctime64_r (const struct TM *, char *); + +char *ctime64 (const Time64_T*); +char *ctime64_r (const Time64_T*, char*); + +Time64_T timegm64 (const struct TM *); +Time64_T mktime64 (struct TM *); +Time64_T timelocal64 (struct TM *); + + +/* Not everyone has gm/localtime_r(), provide a replacement */ +#ifdef HAVE_LOCALTIME_R +# define LOCALTIME_R(clock, result) localtime_r(clock, result) +#else +# define LOCALTIME_R(clock, result) fake_localtime_r(clock, result) +#endif +#ifdef HAVE_GMTIME_R +# define GMTIME_R(clock, result) gmtime_r(clock, result) +#else +# define GMTIME_R(clock, result) fake_gmtime_r(clock, result) +#endif + + +/* Use a different asctime format depending on how big the year is */ +#ifdef USE_TM64 + #define TM64_ASCTIME_FORMAT "%.3s %.3s%3d %.2d:%.2d:%.2d %lld\n" +#else + #define TM64_ASCTIME_FORMAT "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n" +#endif + +void copy_tm_to_TM64(const struct tm *src, struct TM *dest); +void copy_TM64_to_tm(const struct TM *src, struct tm *dest); + +#endif diff --git a/src/time64_limits.h b/src/time64_limits.h new file mode 100644 index 0000000..91079af --- /dev/null +++ b/src/time64_limits.h @@ -0,0 +1,95 @@ +/* + Maximum and minimum inputs your system's respective time functions + can correctly handle. time64.h will use your system functions if + the input falls inside these ranges and corresponding USE_SYSTEM_* + constant is defined. +*/ + +#ifndef TIME64_LIMITS_H +#define TIME64_LIMITS_H + +/* Max/min for localtime() */ +#define SYSTEM_LOCALTIME_MAX 2147483647 +#define SYSTEM_LOCALTIME_MIN -2147483647-1 + +/* Max/min for gmtime() */ +#define SYSTEM_GMTIME_MAX 2147483647 +#define SYSTEM_GMTIME_MIN -2147483647-1 + +/* Max/min for mktime() */ +static const struct tm SYSTEM_MKTIME_MAX = { + 7, + 14, + 19, + 18, + 0, + 138, + 1, + 17, + 0 +#ifdef HAVE_TM_TM_GMTOFF + ,-28800 +#endif +#ifdef HAVE_TM_TM_ZONE + ,(char*)"PST" +#endif +}; + +static const struct tm SYSTEM_MKTIME_MIN = { + 52, + 45, + 12, + 13, + 11, + 1, + 5, + 346, + 0 +#ifdef HAVE_TM_TM_GMTOFF + ,-28800 +#endif +#ifdef HAVE_TM_TM_ZONE + ,(char*)"PST" +#endif +}; + +/* Max/min for timegm() */ +#ifdef HAVE_TIMEGM +static const struct tm SYSTEM_TIMEGM_MAX = { + 7, + 14, + 3, + 19, + 0, + 138, + 2, + 18, + 0 + #ifdef HAVE_TM_TM_GMTOFF + ,0 + #endif + #ifdef HAVE_TM_TM_ZONE + ,(char*)"UTC" + #endif +}; + +static const struct tm SYSTEM_TIMEGM_MIN = { + 52, + 45, + 20, + 13, + 11, + 1, + 5, + 346, + 0 + #ifdef HAVE_TM_TM_GMTOFF + ,0 + #endif + #ifdef HAVE_TM_TM_ZONE + ,(char*)"UTC" + #endif +}; +#endif /* HAVE_TIMEGM */ + +#endif /* TIME64_LIMITS_H */ diff --git a/src/xplist.c b/src/xplist.c index e55a094..fc665ac 100644 --- a/src/xplist.c +++ b/src/xplist.c @@ -41,6 +41,7 @@ #include "plist.h" #include "base64.h" +#include "time64.h" #define XPLIST_TEXT BAD_CAST("text") #define XPLIST_KEY BAD_CAST("key") @@ -258,12 +259,15 @@ static void node_to_xml(node_t* node, void *xml_struct) case PLIST_DATE: tag = XPLIST_DATE; { - time_t timev = (time_t)node_data->realval + MAC_EPOCH; - struct tm *btime = gmtime(&timev); + Time64_T timev = (Time64_T)node_data->realval + MAC_EPOCH; + struct TM _btime; + struct TM *btime = gmtime64_r(&timev, &_btime); if (btime) { val = (char*)malloc(24); memset(val, 0, 24); - if (strftime(val, 24, "%Y-%m-%dT%H:%M:%SZ", btime) <= 0) { + struct tm _tmcopy; + copy_TM64_to_tm(btime, &_tmcopy); + if (strftime(val, 24, "%Y-%m-%dT%H:%M:%SZ", &_tmcopy) <= 0) { free (val); val = NULL; } @@ -346,7 +350,7 @@ static void node_to_xml(node_t* node, void *xml_struct) return; } -static void parse_date(const char *strval, struct tm *btime) +static void parse_date(const char *strval, struct TM *btime) { if (!btime) return; memset(btime, 0, sizeof(struct tm)); @@ -354,7 +358,12 @@ static void parse_date(const char *strval, struct tm *btime) #ifdef strptime strptime((char*)strval, "%Y-%m-%dT%H:%M:%SZ", btime); #else - sscanf(strval, "%d-%d-%dT%d:%d:%dZ", &btime->tm_year, &btime->tm_mon, &btime->tm_mday, &btime->tm_hour, &btime->tm_min, &btime->tm_sec); +#ifdef USE_TM64 + #define PLIST_SSCANF_FORMAT "%lld-%d-%dT%d:%d:%dZ" +#else + #define PLIST_SSCANF_FORMAT "%d-%d-%dT%d:%d:%dZ" +#endif + sscanf(strval, PLIST_SSCANF_FORMAT, &btime->tm_year, &btime->tm_mon, &btime->tm_mday, &btime->tm_hour, &btime->tm_min, &btime->tm_sec); btime->tm_year-=1900; btime->tm_mon--; #endif @@ -453,14 +462,11 @@ static void xml_to_node(xmlNodePtr xml_node, plist_t * plist_node) if (!xmlStrcmp(node->name, XPLIST_DATE)) { xmlChar *strval = xmlNodeGetContent(node); - time_t timev = 0; + Time64_T timev = 0; if (strlen((const char*)strval) >= 11) { - struct tm btime; - struct tm* tm_utc; + struct TM btime; parse_date((const char*)strval, &btime); - timev = mktime(&btime); - tm_utc = gmtime(&timev); - timev -= (mktime(tm_utc) - timev); + timev = timegm64(&btime); } data->realval = (double)(timev - MAC_EPOCH); data->type = PLIST_DATE; -- cgit v1.1-32-gdbae