/* * plist.c * Binary plist implementation * * Copyright (c) 2008 Jonathan Beck All Rights Reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include "plist.h" #include "hashtable.h" #include "bytearray.h" #include "ptrarray.h" #include #include /* Magic marker and size. */ #define BPLIST_MAGIC ((uint8_t*)"bplist") #define BPLIST_MAGIC_SIZE 6 #define BPLIST_VERSION ((uint8_t*)"00") #define BPLIST_VERSION_SIZE 2 #define BPLIST_TRL_SIZE 26 #define BPLIST_TRL_OFFSIZE_IDX 0 #define BPLIST_TRL_PARMSIZE_IDX 1 #define BPLIST_TRL_NUMOBJ_IDX 2 #define BPLIST_TRL_ROOTOBJ_IDX 10 #define BPLIST_TRL_OFFTAB_IDX 18 enum { BPLIST_NULL = 0x00, BPLIST_FALSE = 0x08, BPLIST_TRUE = 0x09, BPLIST_FILL = 0x0F, /* will be used for length grabbing */ BPLIST_UINT = 0x10, BPLIST_REAL = 0x20, BPLIST_DATE = 0x30, BPLIST_DATA = 0x40, BPLIST_STRING = 0x50, BPLIST_UNICODE = 0x60, BPLIST_UNK_0x70 = 0x70, BPLIST_UID = 0x80, BPLIST_ARRAY = 0xA0, BPLIST_SET = 0xC0, BPLIST_DICT = 0xD0, BPLIST_MASK = 0xF0 }; static void float_byte_convert(uint8_t * address, size_t size) { #if PLIST_BYTE_ORDER == PLIST_LITTLE_ENDIAN && !defined (__VFP_FP__) uint8_t i = 0, j = 0; uint8_t tmp = 0; for (i = 0; i < (size / 2); i++) { tmp = address[i]; j = ((size - 1) + 0) - i; address[i] = address[j]; address[j] = tmp; } #endif } union plist_uint_ptr { void *src; uint8_t *u8ptr; uint16_t *u16ptr; uint32_t *u32ptr; uint64_t *u64ptr; }; #define get_unaligned(ptr) \ ({ \ struct __attribute__((packed)) { \ typeof(*(ptr)) __v; \ } *__p = (void *) (ptr); \ __p->__v; \ }) static void byte_convert(uint8_t * address, size_t size) { #if PLIST_BYTE_ORDER == PLIST_LITTLE_ENDIAN uint8_t i = 0, j = 0; uint8_t tmp = 0; for (i = 0; i < (size / 2); i++) { tmp = address[i]; j = ((size - 1) + 0) - i; address[i] = address[j]; address[j] = tmp; } #endif } static uint32_t uint24_from_be(union plist_uint_ptr buf) { union plist_uint_ptr tmp; uint32_t ret = 0; tmp.src = &ret; memcpy(tmp.u8ptr + 1, buf.u8ptr, 3 * sizeof(char)); byte_convert(tmp.u8ptr, sizeof(uint32_t)); return ret; } #ifndef be16toh #if PLIST_BYTE_ORDER == PLIST_BIG_ENDIAN #define be16toh(x) (x) #else #define be16toh(x) ((((x) & 0xFF00) >> 8) | (((x) & 0x00FF) << 8)) #endif #endif #ifndef be32toh #if PLIST_BYTE_ORDER == PLIST_BIG_ENDIAN #define be32toh(x) (x) #else #define be32toh(x) ((((x) & 0xFF000000) >> 24) \ | (((x) & 0x00FF0000) >> 8) \ | (((x) & 0x0000FF00) << 8) \ | (((x) & 0x000000FF) << 24)) #endif #endif #ifndef be64toh #if PLIST_BYTE_ORDER == PLIST_BIG_ENDIAN #define be64toh(x) (x) #else #define be64toh(x) ((((x) & 0xFF00000000000000ull) >> 56) \ | (((x) & 0x00FF000000000000ull) >> 40) \ | (((x) & 0x0000FF0000000000ull) >> 24) \ | (((x) & 0x000000FF00000000ull) >> 8) \ | (((x) & 0x00000000FF000000ull) << 8) \ | (((x) & 0x0000000000FF0000ull) << 24) \ | (((x) & 0x000000000000FF00ull) << 40) \ | (((x) & 0x00000000000000FFull) << 56)) #endif #endif #define UINT_TO_HOST(x, n) \ ({ \ union plist_uint_ptr __up; \ __up.src = x; \ (n == 8 ? be64toh( get_unaligned(__up.u64ptr) ) : \ (n == 4 ? be32toh( get_unaligned(__up.u32ptr) ) : \ (n == 3 ? uint24_from_be( __up ) : \ (n == 2 ? be16toh( get_unaligned(__up.u16ptr) ) : \ *__up.u8ptr )))); \ }) #define be64dec(x) \ ({ \ union plist_uint_ptr __up; \ __up.src = x; \ be64toh( get_unaligned(__up.u64ptr) ); \ }) #define get_needed_bytes(x) \ ( ((uint64_t)x) < (1ULL << 8) ? 1 : \ ( ((uint64_t)x) < (1ULL << 16) ? 2 : \ ( ((uint64_t)x) < (1ULL << 24) ? 3 : \ ( ((uint64_t)x) < (1ULL << 32) ? 4 : 8)))) #define get_real_bytes(x) (x == (float) x ? 4 : 8) #define NODE_IS_ROOT(x) (((node_t*)x)->isRoot) static plist_t parse_uint_node(char *bnode, uint8_t size, char **next_object) { plist_data_t data = plist_new_plist_data(); size = 1 << size; // make length less misleading switch (size) { case sizeof(uint8_t): case sizeof(uint16_t): case sizeof(uint32_t): case sizeof(uint64_t): memcpy(&data->intval, bnode, size); data->intval = UINT_TO_HOST(&data->intval, size); break; default: free(data); return NULL; }; *next_object = bnode + size; data->type = PLIST_UINT; data->length = sizeof(uint64_t); return node_create(NULL, data); } static plist_t parse_real_node(char *bnode, uint8_t size) { plist_data_t data = plist_new_plist_data(); float floatval = 0.0; uint8_t* buf; size = 1 << size; // make length less misleading buf = malloc (size); memcpy (buf, bnode, size); switch (size) { case sizeof(float): float_byte_convert(buf, size); floatval = *(float *) buf; data->realval = floatval; break; case sizeof(double): float_byte_convert(buf, size); data->realval = *(double *) buf; break; default: free(data); return NULL; } free (buf); data->type = PLIST_REAL; data->length = sizeof(double); return node_create(NULL, data); } static plist_t parse_date_node(char *bnode, uint8_t size) { plist_t node = parse_real_node(bnode, size); plist_data_t data = plist_get_data(node); double time_real = data->realval; data->timeval.tv_sec = (long) time_real; data->timeval.tv_usec = (time_real - (long) time_real) * 1000000; data->type = PLIST_DATE; data->length = sizeof(struct timeval); return node; } static plist_t parse_string_node(char *bnode, uint64_t size) { plist_data_t data = plist_new_plist_data(); data->type = PLIST_STRING; data->strval = (char *) malloc(sizeof(char) * (size + 1)); memcpy(data->strval, bnode, size); data->strval[size] = '\0'; data->length = strlen(data->strval); return node_create(NULL, data); } static char *plist_utf16_to_utf8(uint16_t *unistr, long len, long *items_read, long *items_written) { if (!unistr || (len <= 0)) return NULL; char *outbuf = (char*)malloc(3*(len+1)); int p = 0; int i = 0; uint16_t wc; while (i < len) { wc = unistr[i++]; if (wc >= 0x800) { outbuf[p++] = (char)(0xE0 + ((wc >> 12) & 0xF)); outbuf[p++] = (char)(0x80 + ((wc >> 6) & 0x3F)); outbuf[p++] = (char)(0x80 + (wc & 0x3F)); } else if (wc >= 0x80) { outbuf[p++] = (char)(0xC0 + ((wc >> 6) & 0x1F)); outbuf[p++] = (char)(0x80 + (wc & 0x3F)); } else { outbuf[p++] = (char)(wc & 0x7F); } } if (items_read) { *items_read = i; } if (items_written) { *items_written = p; } outbuf[p] = 0; return outbuf; } static plist_t parse_unicode_node(char *bnode, uint64_t size) { plist_data_t data = plist_new_plist_data(); uint64_t i = 0; uint16_t *unicodestr = NULL; char *tmpstr = NULL; long items_read = 0; long items_written = 0; data->type = PLIST_STRING; unicodestr = (uint16_t*) malloc(sizeof(uint16_t) * size); memcpy(unicodestr, bnode, sizeof(uint16_t) * size); for (i = 0; i < size; i++) byte_convert((uint8_t *) (unicodestr + i), sizeof(uint16_t)); tmpstr = plist_utf16_to_utf8(unicodestr, size, &items_read, &items_written); free(unicodestr); data->type = PLIST_STRING; data->strval = (char *) malloc(sizeof(char) * (items_written + 1)); memcpy(data->strval, tmpstr, items_written); data->strval[items_written] = '\0'; data->length = strlen(data->strval); free(tmpstr); return node_create(NULL, data); } static plist_t parse_data_node(char *bnode, uint64_t size) { plist_data_t data = plist_new_plist_data(); data->type = PLIST_DATA; data->length = size; data->buff = (uint8_t *) malloc(sizeof(uint8_t) * size); memcpy(data->buff, bnode, sizeof(uint8_t) * size); return node_create(NULL, data); } static plist_t parse_dict_node(char *bnode, uint64_t size, uint32_t ref_size) { plist_data_t data = plist_new_plist_data(); data->type = PLIST_DICT; data->length = size; data->buff = (uint8_t *) malloc(sizeof(uint8_t) * size * ref_size * 2); memcpy(data->buff, bnode, sizeof(uint8_t) * size * ref_size * 2); return node_create(NULL, data); } static plist_t parse_array_node(char *bnode, uint64_t size, uint32_t ref_size) { plist_data_t data = plist_new_plist_data(); data->type = PLIST_ARRAY; data->length = size; data->buff = (uint8_t *) malloc(sizeof(uint8_t) * size * ref_size); memcpy(data->buff, bnode, sizeof(uint8_t) * size * ref_size); return node_create(NULL, data); } static plist_t parse_uid_node(char *bnode, uint8_t size, char **next_object) { plist_data_t data = plist_new_plist_data(); size = 1 << size; // make length less misleading switch (size) { case sizeof(uint8_t): case sizeof(uint16_t): case sizeof(uint32_t): case sizeof(uint64_t): memcpy(&data->intval, bnode, size); data->intval = UINT_TO_HOST(&data->intval, size); break; default: free(data); return NULL; }; *next_object = bnode + size; data->type = PLIST_UID; data->length = sizeof(uint64_t); return node_create(NULL, data); } static plist_t parse_bin_node(char *object, uint8_t dict_size, char **next_object) { uint16_t type = 0; uint64_t size = 0; if (!object) return NULL; type = (*object) & 0xF0; size = (*object) & 0x0F; object++; switch (type) { case BPLIST_NULL: switch (size) { case BPLIST_TRUE: { plist_data_t data = plist_new_plist_data(); data->type = PLIST_BOOLEAN; data->boolval = TRUE; data->length = 1; return node_create(NULL, data); } case BPLIST_FALSE: { plist_data_t data = plist_new_plist_data(); data->type = PLIST_BOOLEAN; data->boolval = FALSE; data->length = 1; return node_create(NULL, data); } case BPLIST_NULL: default: return NULL; } case BPLIST_UINT: return parse_uint_node(object, size, next_object); case BPLIST_REAL: return parse_real_node(object, size); case BPLIST_DATE: if (3 != size) return NULL; else return parse_date_node(object, size); case BPLIST_DATA: if (0x0F == size) { plist_t size_node = parse_bin_node(object, dict_size, &object); if (plist_get_node_type(size_node) != PLIST_UINT) return NULL; plist_get_uint_val(size_node, &size); plist_free(size_node); } return parse_data_node(object, size); case BPLIST_STRING: if (0x0F == size) { plist_t size_node = parse_bin_node(object, dict_size, &object); if (plist_get_node_type(size_node) != PLIST_UINT) return NULL; plist_get_uint_val(size_node, &size); plist_free(size_node); } return parse_string_node(object, size); case BPLIST_UNICODE: if (0x0F == size) { plist_t size_node = parse_bin_node(object, dict_size, &object); if (plist_get_node_type(size_node) != PLIST_UINT) return NULL; plist_get_uint_val(size_node, &size); plist_free(size_node); } return parse_unicode_node(object, size); case BPLIST_UNK_0x70: case BPLIST_ARRAY: if (0x0F == size) { plist_t size_node = parse_bin_node(object, dict_size, &object); if (plist_get_node_type(size_node) != PLIST_UINT) return NULL; plist_get_uint_val(size_node, &size); plist_free(size_node); } return parse_array_node(object, size, dict_size); case BPLIST_UID: return parse_uid_node(object, size, next_object); case BPLIST_SET: case BPLIST_DICT: if (0x0F == size) { plist_t size_node = parse_bin_node(object, dict_size, &object); if (plist_get_node_type(size_node) != PLIST_UINT) return NULL; plist_get_uint_val(size_node, &size); plist_free(size_node); } return parse_dict_node(object, size, dict_size); default: return NULL; } return NULL; } static void* copy_plist_data(const void* src) { plist_data_t srcdata = (plist_data_t) src; plist_data_t dstdata = plist_new_plist_data(); dstdata->type = srcdata->type; dstdata->length = srcdata->length; switch (dstdata->type) { case PLIST_BOOLEAN: dstdata->boolval = srcdata->boolval; break; case PLIST_UINT: dstdata->intval = srcdata->intval; break; case PLIST_DATE: dstdata->timeval.tv_sec = srcdata->timeval.tv_sec; dstdata->timeval.tv_usec = srcdata->timeval.tv_usec; break; case PLIST_REAL: dstdata->realval = srcdata->realval; break; case PLIST_KEY: case PLIST_STRING: dstdata->strval = strdup(srcdata->strval); break; case PLIST_DATA: case PLIST_ARRAY: dstdata->buff = (uint8_t*) malloc(sizeof(uint8_t) * srcdata->length); memcpy(dstdata->buff, srcdata->buff, sizeof(uint8_t) * srcdata->length); break; case PLIST_DICT: dstdata->buff = (uint8_t*) malloc(sizeof(uint8_t) * srcdata->length * 2); memcpy(dstdata->buff, srcdata->buff, sizeof(uint8_t) * srcdata->length * 2); break; case PLIST_UID: dstdata->intval = srcdata->intval; break; default: break; } return dstdata; } void plist_from_bin(const char *plist_bin, uint32_t length, plist_t * plist) { char *trailer = NULL; uint8_t offset_size = 0; uint8_t dict_param_size = 0; uint64_t num_objects = 0; uint64_t root_object = 0; uint64_t offset_table_index = 0; plist_t *nodeslist = NULL; uint64_t i = 0; uint64_t current_offset = 0; char *offset_table = NULL; uint32_t j = 0, str_i = 0, str_j = 0; uint32_t index1 = 0, index2 = 0; //first check we have enough data if (!(length >= BPLIST_MAGIC_SIZE + BPLIST_VERSION_SIZE + BPLIST_TRL_SIZE)) return; //check that plist_bin in actually a plist if (memcmp(plist_bin, BPLIST_MAGIC, BPLIST_MAGIC_SIZE) != 0) return; //check for known version if (memcmp(plist_bin + BPLIST_MAGIC_SIZE, BPLIST_VERSION, BPLIST_VERSION_SIZE) != 0) return; //now parse trailer trailer = (char *) (plist_bin + (length - BPLIST_TRL_SIZE)); offset_size = trailer[BPLIST_TRL_OFFSIZE_IDX]; dict_param_size = trailer[BPLIST_TRL_PARMSIZE_IDX]; num_objects = be64dec(trailer + BPLIST_TRL_NUMOBJ_IDX); root_object = be64dec(trailer + BPLIST_TRL_ROOTOBJ_IDX); offset_table_index = be64dec(trailer + BPLIST_TRL_OFFTAB_IDX); if (num_objects == 0) return; //allocate serialized array of nodes nodeslist = (plist_t *) malloc(sizeof(plist_t) * num_objects); if (!nodeslist) return; //parse serialized nodes offset_table = (char *) (plist_bin + offset_table_index); for (i = 0; i < num_objects; i++) { char *obj = NULL; current_offset = UINT_TO_HOST(offset_table + i * offset_size, offset_size); obj = (char *) (plist_bin + current_offset); nodeslist[i] = parse_bin_node(obj, dict_param_size, &obj); } //setup children for structured types for (i = 0; i < num_objects; i++) { plist_data_t data = plist_get_data(nodeslist[i]); switch (data->type) { case PLIST_DICT: for (j = 0; j < data->length; j++) { str_i = j * dict_param_size; str_j = (j + data->length) * dict_param_size; index1 = UINT_TO_HOST(data->buff + str_i, dict_param_size); index2 = UINT_TO_HOST(data->buff + str_j, dict_param_size); //first one is actually a key plist_get_data(nodeslist[index1])->type = PLIST_KEY; if (index1 < num_objects) { if (NODE_IS_ROOT(nodeslist[index1])) node_attach(nodeslist[i], nodeslist[index1]); else node_attach(nodeslist[i], node_copy_deep(nodeslist[index1], copy_plist_data)); } if (index2 < num_objects) { if (NODE_IS_ROOT(nodeslist[index2])) node_attach(nodeslist[i], nodeslist[index2]); else node_attach(nodeslist[i], node_copy_deep(nodeslist[index2], copy_plist_data)); } } free(data->buff); break; case PLIST_ARRAY: for (j = 0; j < data->length; j++) { str_j = j * dict_param_size; index1 = UINT_TO_HOST(data->buff + str_j, dict_param_size); if (index1 < num_objects) { if (NODE_IS_ROOT(nodeslist[index1])) node_attach(nodeslist[i], nodeslist[index1]); else node_attach(nodeslist[i], node_copy_deep(nodeslist[index1], copy_plist_data)); } } free(data->buff); break; default: break; } } *plist = nodeslist[root_object]; free(nodeslist); } static unsigned int plist_data_hash(const void* key) { plist_data_t data = plist_get_data((plist_t) key); unsigned int hash = data->type; unsigned int i = 0; char *buff = NULL; unsigned int size = 0; switch (data->type) { case PLIST_BOOLEAN: case PLIST_UINT: case PLIST_REAL: case PLIST_UID: buff = (char *) &data->intval; //works also for real as we use an union size = 8; break; case PLIST_KEY: case PLIST_STRING: buff = data->strval; size = strlen(buff); break; case PLIST_DATA: case PLIST_ARRAY: case PLIST_DICT: //for these types only hash pointer buff = (char *) &key; size = sizeof(const void*); break; case PLIST_DATE: buff = (char *) &(data->timeval); size = data->length; break; default: break; } //now perform hash for (i = 0; i < size; buff++, i++) hash = hash << 7 ^ (*buff); return hash; } struct serialize_s { ptrarray_t* objects; hashtable_t* ref_table; }; static void serialize_plist(node_t* node, void* data) { uint64_t *index_val = NULL; struct serialize_s *ser = (struct serialize_s *) data; uint64_t current_index = ser->objects->len; //first check that node is not yet in objects void* val = hash_table_lookup(ser->ref_table, node); if (val) { //data is already in table return; } //insert new ref index_val = (uint64_t *) malloc(sizeof(uint64_t)); *index_val = current_index; hash_table_insert(ser->ref_table, node, index_val); //now append current node to object array ptr_array_add(ser->objects, node); //now recurse on children node_iterator_t *ni = node_iterator_create(node->children); node_t *ch; while ((ch = node_iterator_next(ni))) { serialize_plist(ch, data); } node_iterator_destroy(ni); return; } #define Log2(x) (x == 8 ? 3 : (x == 4 ? 2 : (x == 2 ? 1 : 0))) static void write_int(bytearray_t * bplist, uint64_t val) { uint64_t size = get_needed_bytes(val); uint8_t *buff = NULL; //do not write 3bytes int node if (size == 3) size++; #if PLIST_BYTE_ORDER == PLIST_BIG_ENDIAN val = val << ((sizeof(uint64_t) - size) * 8); #endif buff = (uint8_t *) malloc(sizeof(uint8_t) + size); buff[0] = BPLIST_UINT | Log2(size); memcpy(buff + 1, &val, size); byte_convert(buff + 1, size); byte_array_append(bplist, buff, sizeof(uint8_t) + size); free(buff); } static void write_real(bytearray_t * bplist, double val) { uint64_t size = get_real_bytes(val); //cheat to know used space uint8_t *buff = (uint8_t *) malloc(sizeof(uint8_t) + size); buff[0] = BPLIST_REAL | Log2(size); if (size == sizeof(double)) { memcpy(buff + 1, &val, size); } else if (size == sizeof(float)) { float tmpval = (float) val; memcpy(buff + 1, &tmpval, size); } float_byte_convert(buff + 1, size); byte_array_append(bplist, buff, sizeof(uint8_t) + size); free(buff); } static void write_date(bytearray_t * bplist, double val) { uint64_t size = 8; //dates always use 8 bytes uint8_t *buff = (uint8_t *) malloc(sizeof(uint8_t) + size); buff[0] = BPLIST_DATE | Log2(size); memcpy(buff + 1, &val, size); float_byte_convert(buff + 1, size); byte_array_append(bplist, buff, sizeof(uint8_t) + size); free(buff); } static void write_raw_data(bytearray_t * bplist, uint8_t mark, uint8_t * val, uint64_t size) { uint8_t *buff = NULL; uint8_t marker = mark | (size < 15 ? size : 0xf); byte_array_append(bplist, &marker, sizeof(uint8_t)); if (size >= 15) { bytearray_t *int_buff = byte_array_new(); write_int(int_buff, size); byte_array_append(bplist, int_buff->data, int_buff->len); byte_array_free(int_buff); } //stupid unicode buffer length if (BPLIST_UNICODE==mark) size *= 2; buff = (uint8_t *) malloc(size); memcpy(buff, val, size); byte_array_append(bplist, buff, size); free(buff); } static void write_data(bytearray_t * bplist, uint8_t * val, uint64_t size) { write_raw_data(bplist, BPLIST_DATA, val, size); } static void write_string(bytearray_t * bplist, char *val) { uint64_t size = strlen(val); write_raw_data(bplist, BPLIST_STRING, (uint8_t *) val, size); } static void write_unicode(bytearray_t * bplist, uint16_t * val, uint64_t size) { uint64_t i = 0; uint64_t size2 = size * sizeof(uint16_t); uint8_t *buff = (uint8_t *) malloc(size2); memcpy(buff, val, size2); for (i = 0; i < size; i++) byte_convert(buff + i * sizeof(uint16_t), sizeof(uint16_t)); write_raw_data(bplist, BPLIST_UNICODE, buff, size); free(buff); } static void write_array(bytearray_t * bplist, node_t* node, hashtable_t* ref_table, uint8_t dict_param_size) { uint64_t idx = 0; uint8_t *buff = NULL; node_t* cur = NULL; uint64_t i = 0; uint64_t size = node_n_children(node); uint8_t marker = BPLIST_ARRAY | (size < 15 ? size : 0xf); byte_array_append(bplist, &marker, sizeof(uint8_t)); if (size >= 15) { bytearray_t *int_buff = byte_array_new(); write_int(int_buff, size); byte_array_append(bplist, int_buff->data, int_buff->len); byte_array_free(int_buff); } buff = (uint8_t *) malloc(size * dict_param_size); for (i = 0, cur = node_first_child(node); cur && i < size; cur = node_next_sibling(cur), i++) { idx = *(uint64_t *) (hash_table_lookup(ref_table, cur)); #if PLIST_BYTE_ORDER == PLIST_BIG_ENDIAN idx = idx << ((sizeof(uint64_t) - dict_param_size) * 8); #endif memcpy(buff + i * dict_param_size, &idx, dict_param_size); byte_convert(buff + i * dict_param_size, dict_param_size); } //now append to bplist byte_array_append(bplist, buff, size * dict_param_size); free(buff); } static void write_dict(bytearray_t * bplist, node_t* node, hashtable_t* ref_table, uint8_t dict_param_size) { uint64_t idx1 = 0; uint64_t idx2 = 0; uint8_t *buff = NULL; node_t* cur = NULL; uint64_t i = 0; uint64_t size = node_n_children(node) / 2; uint8_t marker = BPLIST_DICT | (size < 15 ? size : 0xf); byte_array_append(bplist, &marker, sizeof(uint8_t)); if (size >= 15) { bytearray_t *int_buff = byte_array_new(); write_int(int_buff, size); byte_array_append(bplist, int_buff->data, int_buff->len); byte_array_free(int_buff); } buff = (uint8_t *) malloc(size * 2 * dict_param_size); for (i = 0, cur = node_first_child(node); cur && i < size; cur = node_next_sibling(node_next_sibling(cur)), i++) { idx1 = *(uint64_t *) (hash_table_lookup(ref_table, cur)); #if PLIST_BYTE_ORDER == PLIST_BIG_ENDIAN idx1 = idx1 << ((sizeof(uint64_t) - dict_param_size) * 8); #endif memcpy(buff + i * dict_param_size, &idx1, dict_param_size); byte_convert(buff + i * dict_param_size, dict_param_size); idx2 = *(uint64_t *) (hash_table_lookup(ref_table, cur->next)); #if PLIST_BYTE_ORDER == PLIST_BIG_ENDIAN idx2 = idx2 << ((sizeof(uint64_t) - dict_param_size) * 8); #endif memcpy(buff + (i + size) * dict_param_size, &idx2, dict_param_size); byte_convert(buff + (i + size) * dict_param_size, dict_param_size); } //now append to bplist byte_array_append(bplist, buff, size * 2 * dict_param_size); free(buff); } static void write_uid(bytearray_t * bplist, uint64_t val) { uint64_t size = get_needed_bytes(val); uint8_t *buff = NULL; //do not write 3bytes int node if (size == 3) size++; #if PLIST_BYTE_ORDER == PLIST_BIG_ENDIAN val = val << ((sizeof(uint64_t) - size) * 8); #endif buff = (uint8_t *) malloc(sizeof(uint8_t) + size); buff[0] = BPLIST_UID | Log2(size); memcpy(buff + 1, &val, size); byte_convert(buff + 1, size); byte_array_append(bplist, buff, sizeof(uint8_t) + size); free(buff); } static int is_ascii_string(char* s, int len) { int ret = 1, i = 0; for(i = 0; i < len; i++) { if ( !isascii( s[i] ) ) { ret = 0; break; } } return ret; } uint16_t *plist_utf8_to_utf16(char *unistr, long size, long *items_read, long *items_written) { uint16_t *outbuf = (uint16_t*)malloc((size+1)*sizeof(uint16_t)); int p = 0; int i = 0; unsigned char c0; unsigned char c1; unsigned char c2; while (i < size) { c0 = unistr[i]; c1 = (i < size-1) ? unistr[i+1] : 0; c2 = (i < size-2) ? unistr[i+2] : 0; if ((c0 >= 0xE0) && (i < size-2) && (c1 >= 0x80) && (c2 >= 0x80)) { // 3 byte sequence outbuf[p++] = ((c2 & 0x3F) + ((c1 & 3) << 6)) + (((c1 >> 2) & 15) << 8) + ((c0 & 15) << 12); i+=3; } else if ((c0 >= 0xC0) && (i < size-1) && (c1 >= 0x80)) { // 2 byte sequence outbuf[p++] = ((c1 & 0x3F) + ((c0 & 3) << 6)) + (((c0 >> 2) & 7) << 8); i+=2; } else if (c0 < 0x80) { // 1 byte sequence outbuf[p++] = c0; i+=1; } else { // invalid character fprintf(stderr, "invalid utf8 sequence in string at index %d\n", i); break; } } if (items_read) { *items_read = i; } if (items_written) { *items_written = p; } outbuf[p] = 0; return outbuf; } void plist_to_bin(plist_t plist, char **plist_bin, uint32_t * length) { ptrarray_t* objects = NULL; hashtable_t* ref_table = NULL; struct serialize_s ser_s; uint8_t offset_size = 0; uint8_t dict_param_size = 0; uint64_t num_objects = 0; uint64_t root_object = 0; uint64_t offset_table_index = 0; bytearray_t *bplist_buff = NULL; uint64_t i = 0; uint8_t *buff = NULL; uint64_t *offsets = NULL; uint8_t pad[6] = { 0, 0, 0, 0, 0, 0 }; uint8_t trailer[BPLIST_TRL_SIZE]; //for string long len = 0; long items_read = 0; long items_written = 0; uint16_t *unicodestr = NULL; //check for valid input if (!plist || !plist_bin || *plist_bin || !length) return; //list of objects objects = ptr_array_new(256); //hashtable to write only once same nodes ref_table = hash_table_new(plist_data_hash, plist_data_compare); //serialize plist ser_s.objects = objects; ser_s.ref_table = ref_table; serialize_plist(plist, &ser_s); //now stream to output buffer offset_size = 0; //unknown yet dict_param_size = get_needed_bytes(objects->len); num_objects = objects->len; root_object = 0; //root is first in list offset_table_index = 0; //unknown yet //setup a dynamic bytes array to store bplist in bplist_buff = byte_array_new(); //set magic number and version byte_array_append(bplist_buff, BPLIST_MAGIC, BPLIST_MAGIC_SIZE); byte_array_append(bplist_buff, BPLIST_VERSION, BPLIST_VERSION_SIZE); //write objects and table offsets = (uint64_t *) malloc(num_objects * sizeof(uint64_t)); for (i = 0; i < num_objects; i++) { plist_data_t data = plist_get_data(ptr_array_index(objects, i)); offsets[i] = bplist_buff->len; switch (data->type) { case PLIST_BOOLEAN: buff = (uint8_t *) malloc(sizeof(uint8_t)); buff[0] = data->boolval ? BPLIST_TRUE : BPLIST_FALSE; byte_array_append(bplist_buff, buff, sizeof(uint8_t)); free(buff); break; case PLIST_UINT: write_int(bplist_buff, data->intval); break; case PLIST_REAL: write_real(bplist_buff, data->realval); break; case PLIST_KEY: case PLIST_STRING: len = strlen(data->strval); if ( is_ascii_string(data->strval, len) ) { write_string(bplist_buff, data->strval); } else { unicodestr = plist_utf8_to_utf16(data->strval, len, &items_read, &items_written); write_unicode(bplist_buff, unicodestr, items_written); free(unicodestr); } break; case PLIST_DATA: write_data(bplist_buff, data->buff, data->length); case PLIST_ARRAY: write_array(bplist_buff, ptr_array_index(objects, i), ref_table, dict_param_size); break; case PLIST_DICT: write_dict(bplist_buff, ptr_array_index(objects, i), ref_table, dict_param_size); break; case PLIST_DATE: write_date(bplist_buff, data->timeval.tv_sec + (double) data->timeval.tv_usec / 1000000); break; case PLIST_UID: write_uid(bplist_buff, data->intval); break; default: break; } } //free intermediate objects ptr_array_free(objects); hash_table_destroy(ref_table); //write offsets offset_size = get_needed_bytes(bplist_buff->len); offset_table_index = bplist_buff->len; for (i = 0; i < num_objects; i++) { uint8_t *offsetbuff = (uint8_t *) malloc(offset_size); #if PLIST_BYTE_ORDER == PLIST_BIG_ENDIAN offsets[i] = offsets[i] << ((sizeof(uint64_t) - offset_size) * 8); #endif memcpy(offsetbuff, &offsets[i], offset_size); byte_convert(offsetbuff, offset_size); byte_array_append(bplist_buff, offsetbuff, offset_size); free(offsetbuff); } //experimental pad to reflect apple's files byte_array_append(bplist_buff, pad, 6); //setup trailer num_objects = be64toh(num_objects); root_object = be64toh(root_object); offset_table_index = be64toh(offset_table_index); memcpy(trailer + BPLIST_TRL_OFFSIZE_IDX, &offset_size, sizeof(uint8_t)); memcpy(trailer + BPLIST_TRL_PARMSIZE_IDX, &dict_param_size, sizeof(uint8_t)); memcpy(trailer + BPLIST_TRL_NUMOBJ_IDX, &num_objects, sizeof(uint64_t)); memcpy(trailer + BPLIST_TRL_ROOTOBJ_IDX, &root_object, sizeof(uint64_t)); memcpy(trailer + BPLIST_TRL_OFFTAB_IDX, &offset_table_index, sizeof(uint64_t)); byte_array_append(bplist_buff, trailer, BPLIST_TRL_SIZE); //duplicate buffer *plist_bin = (char *) malloc(bplist_buff->len); memcpy(*plist_bin, bplist_buff->data, bplist_buff->len); *length = bplist_buff->len; byte_array_free(bplist_buff); free(offsets); }