summaryrefslogtreecommitdiffstats
path: root/src/time64.c
blob: 364e159dc058afe3d5c71780c62c105b04d1ea3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
/*

Copyright (c) 2007-2010  Michael G Schwern

This software originally derived from Paul Sheer's pivotal_gmtime_r.c.

The MIT License:

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

*/

/*

Programmers who have available to them 64-bit time values as a 'long
long' type can use localtime64_r() and gmtime64_r() which correctly
converts the time even on 32-bit systems. Whether you have 64-bit time
values will depend on the operating system.

localtime64_r() is a 64-bit equivalent of localtime_r().

gmtime64_r() is a 64-bit equivalent of gmtime_r().

*/

#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <errno.h>
#include "time64.h"
#include "time64_limits.h"


static const char days_in_month[2][12] = {
    {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
    {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
};

static const short julian_days_by_month[2][12] = {
    {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334},
    {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335},
};

static char wday_name[7][4] = {
    "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
};

static char mon_name[12][4] = {
    "Jan", "Feb", "Mar", "Apr", "May", "Jun",
    "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
};

static const short length_of_year[2] = { 365, 366 };

/* Some numbers relating to the gregorian cycle */
static const Year     years_in_gregorian_cycle   = 400;
#define               days_in_gregorian_cycle      ((365 * 400) + 100 - 4 + 1)
static const Time64_T seconds_in_gregorian_cycle = days_in_gregorian_cycle * 60LL * 60LL * 24LL;

/* Year range we can trust the time funcitons with */
#define MAX_SAFE_YEAR 2037
#define MIN_SAFE_YEAR 1971

/* 28 year Julian calendar cycle */
#define SOLAR_CYCLE_LENGTH 28

/* Year cycle from MAX_SAFE_YEAR down. */
static const short safe_years_high[SOLAR_CYCLE_LENGTH] = {
    2016, 2017, 2018, 2019,
    2020, 2021, 2022, 2023,
    2024, 2025, 2026, 2027,
    2028, 2029, 2030, 2031,
    2032, 2033, 2034, 2035,
    2036, 2037, 2010, 2011,
    2012, 2013, 2014, 2015
};

/* Year cycle from MIN_SAFE_YEAR up */
static const int safe_years_low[SOLAR_CYCLE_LENGTH] = {
    1996, 1997, 1998, 1971,
    1972, 1973, 1974, 1975,
    1976, 1977, 1978, 1979,
    1980, 1981, 1982, 1983,
    1984, 1985, 1986, 1987,
    1988, 1989, 1990, 1991,
    1992, 1993, 1994, 1995,
};

/* This isn't used, but it's handy to look at */
#if 0
static const char dow_year_start[SOLAR_CYCLE_LENGTH] = {
    5, 0, 1, 2,     /* 0       2016 - 2019 */
    3, 5, 6, 0,     /* 4  */
    1, 3, 4, 5,     /* 8       1996 - 1998, 1971*/
    6, 1, 2, 3,     /* 12      1972 - 1975 */
    4, 6, 0, 1,     /* 16 */
    2, 4, 5, 6,     /* 20      2036, 2037, 2010, 2011 */
    0, 2, 3, 4      /* 24      2012, 2013, 2014, 2015 */
};
#endif

/* Let's assume people are going to be looking for dates in the future.
   Let's provide some cheats so you can skip ahead.
   This has a 4x speed boost when near 2008.
*/
/* Number of days since epoch on Jan 1st, 2008 GMT */
#define CHEAT_DAYS  (1199145600 / 24 / 60 / 60)
#define CHEAT_YEARS 108

#define IS_LEAP(n)      ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0)
#define WRAP(a,b,m)     ((a) = ((a) <  0  ) ? ((b)--, (a) + (m)) : (a))

#ifdef USE_SYSTEM_LOCALTIME
#    define SHOULD_USE_SYSTEM_LOCALTIME(a)  (       \
    (a) <= SYSTEM_LOCALTIME_MAX &&              \
    (a) >= SYSTEM_LOCALTIME_MIN                 \
)
#else
#    define SHOULD_USE_SYSTEM_LOCALTIME(a)      (0)
#endif

#ifdef USE_SYSTEM_GMTIME
#    define SHOULD_USE_SYSTEM_GMTIME(a)     (       \
    (a) <= SYSTEM_GMTIME_MAX    &&              \
    (a) >= SYSTEM_GMTIME_MIN                    \
)
#else
#    define SHOULD_USE_SYSTEM_GMTIME(a)         (0)
#endif

/* Multi varadic macros are a C99 thing, alas */
#ifdef TIME_64_DEBUG
#    define TIME64_TRACE(format) (fprintf(stderr, format))
#    define TIME64_TRACE1(format, var1)    (fprintf(stderr, format, var1))
#    define TIME64_TRACE2(format, var1, var2)    (fprintf(stderr, format, var1, var2))
#    define TIME64_TRACE3(format, var1, var2, var3)    (fprintf(stderr, format, var1, var2, var3))
#else
#    define TIME64_TRACE(format) ((void)0)
#    define TIME64_TRACE1(format, var1) ((void)0)
#    define TIME64_TRACE2(format, var1, var2) ((void)0)
#    define TIME64_TRACE3(format, var1, var2, var3) ((void)0)
#endif


static int is_exception_century(Year year)
{
    int is_exception = ((year % 100 == 0) && !(year % 400 == 0));
    TIME64_TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no");

    return(is_exception);
}


/* Compare two dates.
   The result is like cmp.
   Ignores things like gmtoffset and dst
*/
static int cmp_date( const struct TM* left, const struct tm* right ) {
    if( left->tm_year > right->tm_year )
        return 1;
    if( left->tm_year < right->tm_year )
        return -1;
    if( left->tm_mon > right->tm_mon )
        return 1;
    if( left->tm_mon < right->tm_mon )
        return -1;
    if( left->tm_mday > right->tm_mday )
        return 1;
    if( left->tm_mday < right->tm_mday )
        return -1;
    if( left->tm_hour > right->tm_hour )
        return 1;
    if( left->tm_hour < right->tm_hour )
        return -1;
    if( left->tm_min > right->tm_min )
        return 1;
    if( left->tm_min < right->tm_min )
        return -1;
    if( left->tm_sec > right->tm_sec )
        return 1;
    if( left->tm_sec < right->tm_sec )
        return -1;
    return 0;
}


/* Check if a date is safely inside a range.
   The intention is to check if its a few days inside.
*/
static int date_in_safe_range( const struct TM* date, const struct tm* min, const struct tm* max ) {
    if( cmp_date(date, min) == -1 )
        return 0;

    if( cmp_date(date, max) == 1 )
        return 0;

    return 1;
}


/* timegm() is not in the C or POSIX spec, but it is such a useful
   extension I would be remiss in leaving it out.  Also I need it
   for localtime64()
*/
Time64_T timegm64(const struct TM *date) {
    Time64_T days    = 0;
    Time64_T seconds = 0;
    Year     year;
    Year     orig_year = (Year)date->tm_year;
    int      cycles  = 0;

    if( orig_year > 100 ) {
        cycles = (orig_year - 100) / 400;
        orig_year -= cycles * 400;
        days      += (Time64_T)cycles * days_in_gregorian_cycle;
    }
    else if( orig_year < -300 ) {
        cycles = (orig_year - 100) / 400;
        orig_year -= cycles * 400;
        days      += (Time64_T)cycles * days_in_gregorian_cycle;
    }
    TIME64_TRACE3("# timegm/ cycles: %d, days: %lld, orig_year: %lld\n", cycles, days, orig_year);

    if( orig_year > 70 ) {
        year = 70;
        while( year < orig_year ) {
            days += length_of_year[IS_LEAP(year)];
            year++;
        }
    }
    else if ( orig_year < 70 ) {
        year = 69;
        do {
            days -= length_of_year[IS_LEAP(year)];
            year--;
        } while( year >= orig_year );
    }

    days += julian_days_by_month[IS_LEAP(orig_year)][date->tm_mon];
    days += date->tm_mday - 1;

    seconds = days * 60 * 60 * 24;

    seconds += date->tm_hour * 60 * 60;
    seconds += date->tm_min * 60;
    seconds += date->tm_sec;

    return(seconds);
}


static int check_tm(struct TM *tm)
{
    /* Don't forget leap seconds */
    assert(tm->tm_sec >= 0);
    assert(tm->tm_sec <= 61);

    assert(tm->tm_min >= 0);
    assert(tm->tm_min <= 59);

    assert(tm->tm_hour >= 0);
    assert(tm->tm_hour <= 23);

    assert(tm->tm_mday >= 1);
    assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]);

    assert(tm->tm_mon  >= 0);
    assert(tm->tm_mon  <= 11);

    assert(tm->tm_wday >= 0);
    assert(tm->tm_wday <= 6);

    assert(tm->tm_yday >= 0);
    assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]);

#ifdef HAVE_TM_TM_GMTOFF
    assert(tm->tm_gmtoff >= -24 * 60 * 60);
    assert(tm->tm_gmtoff <=  24 * 60 * 60);
#endif

    return 1;
}


/* The exceptional centuries without leap years cause the cycle to
   shift by 16
*/
static Year cycle_offset(Year year)
{
    const Year start_year = 2000;
    Year year_diff  = year - start_year;
    Year exceptions;

    if( year > start_year )
        year_diff--;

    exceptions  = year_diff / 100;
    exceptions -= year_diff / 400;

    TIME64_TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n",
          year, exceptions, year_diff);

    return exceptions * 16;
}

/* For a given year after 2038, pick the latest possible matching
   year in the 28 year calendar cycle.

   A matching year...
   1) Starts on the same day of the week.
   2) Has the same leap year status.

   This is so the calendars match up.

   Also the previous year must match.  When doing Jan 1st you might
   wind up on Dec 31st the previous year when doing a -UTC time zone.

   Finally, the next year must have the same start day of week.  This
   is for Dec 31st with a +UTC time zone.
   It doesn't need the same leap year status since we only care about
   January 1st.
*/
static int safe_year(const Year year)
{
    int _safe_year = (int)year;
    Year year_cycle;

    if( year >= MIN_SAFE_YEAR && year <= MAX_SAFE_YEAR ) {
        return _safe_year;
    }

    year_cycle = year + cycle_offset(year);

    /* safe_years_low is off from safe_years_high by 8 years */
    if( year < MIN_SAFE_YEAR )
        year_cycle -= 8;

    /* Change non-leap xx00 years to an equivalent */
    if( is_exception_century(year) )
        year_cycle += 11;

    /* Also xx01 years, since the previous year will be wrong */
    if( is_exception_century(year - 1) )
        year_cycle += 17;

    year_cycle %= SOLAR_CYCLE_LENGTH;
    if( year_cycle < 0 )
        year_cycle = SOLAR_CYCLE_LENGTH + year_cycle;

    assert( year_cycle >= 0 );
    assert( year_cycle < SOLAR_CYCLE_LENGTH );
    if( year < MIN_SAFE_YEAR )
        _safe_year = safe_years_low[year_cycle];
    else if( year > MAX_SAFE_YEAR )
        _safe_year = safe_years_high[year_cycle];
    else
        assert(0);

    TIME64_TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n",
          year, year_cycle, _safe_year);

    assert(_safe_year <= MAX_SAFE_YEAR && _safe_year >= MIN_SAFE_YEAR);

    return _safe_year;
}


void copy_tm_to_TM64(const struct tm *src, struct TM *dest) {
    if( src == NULL ) {
        memset(dest, 0, sizeof(*dest));
    }
    else {
#       ifdef USE_TM64
            dest->tm_sec        = src->tm_sec;
            dest->tm_min        = src->tm_min;
            dest->tm_hour       = src->tm_hour;
            dest->tm_mday       = src->tm_mday;
            dest->tm_mon        = src->tm_mon;
            dest->tm_year       = (Year)src->tm_year;
            dest->tm_wday       = src->tm_wday;
            dest->tm_yday       = src->tm_yday;
            dest->tm_isdst      = src->tm_isdst;

#           ifdef HAVE_TM_TM_GMTOFF
                dest->tm_gmtoff  = src->tm_gmtoff;
#           endif

#           ifdef HAVE_TM_TM_ZONE
                dest->tm_zone  = src->tm_zone;
#           endif

#       else
            /* They're the same type */
            memcpy(dest, src, sizeof(*dest));
#       endif
    }
}


void copy_TM64_to_tm(const struct TM *src, struct tm *dest) {
    if( src == NULL ) {
        memset(dest, 0, sizeof(*dest));
    }
    else {
#       ifdef USE_TM64
            dest->tm_sec        = src->tm_sec;
            dest->tm_min        = src->tm_min;
            dest->tm_hour       = src->tm_hour;
            dest->tm_mday       = src->tm_mday;
            dest->tm_mon        = src->tm_mon;
            dest->tm_year       = (int)src->tm_year;
            dest->tm_wday       = src->tm_wday;
            dest->tm_yday       = src->tm_yday;
            dest->tm_isdst      = src->tm_isdst;

#           ifdef HAVE_TM_TM_GMTOFF
                dest->tm_gmtoff  = src->tm_gmtoff;
#           endif

#           ifdef HAVE_TM_TM_ZONE
                dest->tm_zone  = src->tm_zone;
#           endif

#       else
            /* They're the same type */
            memcpy(dest, src, sizeof(*dest));
#       endif
    }
}


#ifndef HAVE_LOCALTIME_R
/* Simulate localtime_r() to the best of our ability */
static struct tm * fake_localtime_r(const time_t *time, struct tm *result) {
    const struct tm *static_result = localtime(time);

    assert(result != NULL);

    if( static_result == NULL ) {
        memset(result, 0, sizeof(*result));
        return NULL;
    }
    else {
        memcpy(result, static_result, sizeof(*result));
        return result;
    }
}
#endif


#ifndef HAVE_GMTIME_R
/* Simulate gmtime_r() to the best of our ability */
static struct tm * fake_gmtime_r(const time_t *time, struct tm *result) {
    const struct tm *static_result = gmtime(time);

    assert(result != NULL);

    if( static_result == NULL ) {
        memset(result, 0, sizeof(*result));
        return NULL;
    }
    else {
        memcpy(result, static_result, sizeof(*result));
        return result;
    }
}
#endif


static Time64_T seconds_between_years(Year left_year, Year right_year) {
    int increment = (left_year > right_year) ? 1 : -1;
    Time64_T seconds = 0;
    int cycles;

    if( left_year > 2400 ) {
        cycles = (left_year - 2400) / 400;
        left_year -= cycles * 400;
        seconds   += cycles * seconds_in_gregorian_cycle;
    }
    else if( left_year < 1600 ) {
        cycles = (left_year - 1600) / 400;
        left_year += cycles * 400;
        seconds   += cycles * seconds_in_gregorian_cycle;
    }

    while( left_year != right_year ) {
        seconds += length_of_year[IS_LEAP(right_year - 1900)] * 60 * 60 * 24;
        right_year += increment;
    }

    return seconds * increment;
}


Time64_T mktime64(struct TM *input_date) {
    struct tm safe_date;
    struct TM date;
    Time64_T  timev;
    Year      year = input_date->tm_year + 1900;

    if( date_in_safe_range(input_date, &SYSTEM_MKTIME_MIN, &SYSTEM_MKTIME_MAX) )
    {
        copy_TM64_to_tm(input_date, &safe_date);
        timev = (Time64_T)mktime(&safe_date);

        /* Correct the possibly out of bound input date */
        copy_tm_to_TM64(&safe_date, input_date);
        return timev;
    }

    /* Have to make the year safe in date else it won't fit in safe_date */
    date = *input_date;
    date.tm_year = safe_year(year) - 1900;
    copy_TM64_to_tm(&date, &safe_date);

    timev = (Time64_T)mktime(&safe_date);

    /* Correct the user's possibly out of bound input date */
    copy_tm_to_TM64(&safe_date, input_date);

    timev += seconds_between_years(year, (Year)(safe_date.tm_year + 1900));

    return timev;
}


/* Because I think mktime() is a crappy name */
Time64_T timelocal64(struct TM *date) {
    return mktime64(date);
}


struct TM *gmtime64_r (const Time64_T *in_time, struct TM *p)
{
    int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday;
    Time64_T v_tm_tday;
    int leap;
    Time64_T m;
    Time64_T timev = *in_time;
    Year year = 70;
    int cycles = 0;

    assert(p != NULL);

    /* Use the system gmtime() if time_t is small enough */
    if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) {
        time_t safe_time = (time_t)*in_time;
        struct tm safe_date;
        GMTIME_R(&safe_time, &safe_date);

        copy_tm_to_TM64(&safe_date, p);
        assert(check_tm(p));

        return p;
    }

#ifdef HAVE_TM_TM_GMTOFF
    p->tm_gmtoff = 0;
#endif
    p->tm_isdst  = 0;

#ifdef HAVE_TM_TM_ZONE
    p->tm_zone   = (char*)"UTC";
#endif

    v_tm_sec =  (int)(timev % 60);
    timev /= 60;
    v_tm_min =  (int)(timev % 60);
    timev /= 60;
    v_tm_hour = (int)(timev % 24);
    timev /= 24;
    v_tm_tday = timev;

    WRAP (v_tm_sec, v_tm_min, 60);
    WRAP (v_tm_min, v_tm_hour, 60);
    WRAP (v_tm_hour, v_tm_tday, 24);

    v_tm_wday = (int)((v_tm_tday + 4) % 7);
    if (v_tm_wday < 0)
        v_tm_wday += 7;
    m = v_tm_tday;

    if (m >= CHEAT_DAYS) {
        year = CHEAT_YEARS;
        m -= CHEAT_DAYS;
    }

    if (m >= 0) {
        /* Gregorian cycles, this is huge optimization for distant times */
        cycles = (int)(m / (Time64_T) days_in_gregorian_cycle);
        if( cycles ) {
            m -= (cycles * (Time64_T) days_in_gregorian_cycle);
            year += (cycles * years_in_gregorian_cycle);
        }

        /* Years */
        leap = IS_LEAP (year);
        while (m >= (Time64_T) length_of_year[leap]) {
            m -= (Time64_T) length_of_year[leap];
            year++;
            leap = IS_LEAP (year);
        }

        /* Months */
        v_tm_mon = 0;
        while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) {
            m -= (Time64_T) days_in_month[leap][v_tm_mon];
            v_tm_mon++;
        }
    } else {
        year--;

        /* Gregorian cycles */
        cycles = (int)((m / (Time64_T) days_in_gregorian_cycle) + 1);
        if( cycles ) {
            m -= (cycles * (Time64_T) days_in_gregorian_cycle);
            year += (cycles * years_in_gregorian_cycle);
        }

        /* Years */
        leap = IS_LEAP (year);
        while (m < (Time64_T) -length_of_year[leap]) {
            m += (Time64_T) length_of_year[leap];
            year--;
            leap = IS_LEAP (year);
        }

        /* Months */
        v_tm_mon = 11;
        while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) {
            m += (Time64_T) days_in_month[leap][v_tm_mon];
            v_tm_mon--;
        }
        m += (Time64_T) days_in_month[leap][v_tm_mon];
    }

    p->tm_year = year;
    if( p->tm_year != year ) {
#ifdef EOVERFLOW
        errno = EOVERFLOW;
#endif
        return NULL;
    }

    /* At this point m is less than a year so casting to an int is safe */
    p->tm_mday = (int) m + 1;
    p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m;
    p->tm_sec  = v_tm_sec;
    p->tm_min  = v_tm_min;
    p->tm_hour = v_tm_hour;
    p->tm_mon  = v_tm_mon;
    p->tm_wday = v_tm_wday;

    assert(check_tm(p));

    return p;
}


struct TM *localtime64_r (const Time64_T *timev, struct TM *local_tm)
{
    time_t safe_time;
    struct tm safe_date;
    struct TM gm_tm;
    Year orig_year;
    int month_diff;

    assert(local_tm != NULL);

    /* Use the system localtime() if time_t is small enough */
    if( SHOULD_USE_SYSTEM_LOCALTIME(*timev) ) {
        safe_time = (time_t)*timev;

        TIME64_TRACE1("Using system localtime for %lld\n", *timev);

        LOCALTIME_R(&safe_time, &safe_date);

        copy_tm_to_TM64(&safe_date, local_tm);
        assert(check_tm(local_tm));

        return local_tm;
    }

    if( gmtime64_r(timev, &gm_tm) == NULL ) {
        TIME64_TRACE1("gmtime64_r returned null for %lld\n", *timev);
        return NULL;
    }

    orig_year = gm_tm.tm_year;

    if (gm_tm.tm_year > (2037 - 1900) ||
        gm_tm.tm_year < (1970 - 1900)
       )
    {
        TIME64_TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year);
        gm_tm.tm_year = safe_year((Year)(gm_tm.tm_year + 1900)) - 1900;
    }

    safe_time = (time_t)timegm64(&gm_tm);
    if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) {
        TIME64_TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time);
        return NULL;
    }

    copy_tm_to_TM64(&safe_date, local_tm);

    local_tm->tm_year = orig_year;
    if( local_tm->tm_year != orig_year ) {
        TIME64_TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n",
              (Year)local_tm->tm_year, (Year)orig_year);

#ifdef EOVERFLOW
        errno = EOVERFLOW;
#endif
        return NULL;
    }


    month_diff = local_tm->tm_mon - gm_tm.tm_mon;

    /*  When localtime is Dec 31st previous year and
        gmtime is Jan 1st next year.
    */
    if( month_diff == 11 ) {
        local_tm->tm_year--;
    }

    /*  When localtime is Jan 1st, next year and
        gmtime is Dec 31st, previous year.
    */
    if( month_diff == -11 ) {
        local_tm->tm_year++;
    }

    /* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st
       in a non-leap xx00.  There is one point in the cycle
       we can't account for which the safe xx00 year is a leap
       year.  So we need to correct for Dec 31st comming out as
       the 366th day of the year.
    */
    if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 )
        local_tm->tm_yday--;

    assert(check_tm(local_tm));

    return local_tm;
}


static int valid_tm_wday( const struct TM* date ) {
    if( 0 <= date->tm_wday && date->tm_wday <= 6 )
        return 1;

    return 0;
}

static int valid_tm_mon( const struct TM* date ) {
    if( 0 <= date->tm_mon && date->tm_mon <= 11 )
        return 1;

    return 0;
}


char *asctime64_r( const struct TM* date, char *result ) {
    /* I figure everything else can be displayed, even hour 25, but if
       these are out of range we walk off the name arrays */
    if( !valid_tm_wday(date) || !valid_tm_mon(date) )
        return NULL;

    sprintf(result, TM64_ASCTIME_FORMAT,
        wday_name[date->tm_wday],
        mon_name[date->tm_mon],
        date->tm_mday, date->tm_hour,
        date->tm_min, date->tm_sec,
        1900 + date->tm_year);

    return result;
}


char *ctime64_r( const Time64_T* timev, char* result ) {
    struct TM date;

    if (!localtime64_r( timev, &date ))
        return NULL;

    return asctime64_r( &date, result );
}